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Appendix A1 

Modeling team assembly  

In any team, there are two types of members: (i) Newcomers, or rookies, who have limited experience 

and unseasoned skills, but who often bring a refreshing, brash approach to innovation, and (ii) incumbents, 

the veterans with proven track records, established reputations, and identifiable talents. If we categorize all 

scientists as either rookies or veterans, we can distinguish four different types of coauthorship links in a 

joint publication: (1) newcomer-newcomer, (2) newcomer-incumbent, (3) incumbent-incumbent, or, if both 

are incumbents who have worked together before, (4) repeat incumbent-incumbent.  

Varying the proportion of these four types of links within a team allows researchers to develop a model 

capturing how teams are assembled, which then in turn helps us understand how certain coauthorship 

patterns impact the team’s success [1]. The proportions of newcomer-newcomer, newcomer-incumbent, 

incumbent-incumbent, and repeat incumbent-incumbent links can be characterized by two parameters: The 

incumbency parameter, p, which represents the fraction of incumbents within a team, and the diversity 

parameter, q, which captures the degree to which veterans involve their former collaborators.  

As illustrated in Fig A1.1, the model starts with a pool of newcomers (green circles) who haven’t 

worked with anyone else before. Newcomers turn into incumbents (blue circles) when they are drafted onto 

a team for the first time. For simplicity, let’s assume for now that all teams have the same size. To draft 

team members, with probability p we draw from the pool of incumbents, and with probability 1-p, we resort 

to newcomers. If we decide to draw from the incumbents’ pool and there is already another incumbent on 

the team (second panel), then we have another decision to make: If we need a veteran on the team, are we 

going to introduce a new one or bring in a past collaborator? This is determined by the diversity parameter 

q: (i) with probability q, the new member is randomly selected from past collaborators of a randomly 

selected incumbent already on the team, mimicking the tendency of existing team members to choose past 

collaborators; (ii) otherwise, the new member is selected at random among all incumbents (second panel).  
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Consider, for example, the creation of a three-person team (m = 3). At time zero, the collaboration 

network consists of five agents, all incumbents (blue circles). Along with the incumbents, there is a large 

pool of newcomers (green circles) eager to join new teams. As a concrete example, let us assume that 

incumbent 4 is selected as the first member in the new team (leftmost box). Let us also assume that the 

second agent is an incumbent, too (center-left box), which means we need to take the second step, to 

consider if we should choose from past collaborators or a new veteran. In this example, the second agent is 

a past collaborator of agent 4, specifically agent 3 (center-right box). Lastly, the third agent is selected from 

the pool of newcomers; this agent then becomes incumbent 6 (rightmost box).  

 
 

Figure A1.1: Assembling teams in science. The model starts with a pool of newcomers (green circles) and incumbents 

(blue circles). To draft team members, with a probability p we draw from the pool of incumbents, and with a probability 

1-p, we resort to newcomers. If we decide to draw from the incumbents’ pool, the diversity parameter q determines 

the likelihood of involving past collaborators: (i) with probability q, the new member is randomly selected from past 

collaborators of a randomly selected incumbent already on the team; (ii) otherwise, the new member is selected at 

random among all incumbents (center-left box). After Guimera et al. [1] 

 

The model predicts two distinct outcomes for the coauthorship network. The precise shape of the 

network is largely determined by the incumbency parameter p: When p is small, choosing experienced 

veterans is not a priority, offering ample opportunities for newcomers to enter the field. Yet frequently 

choosing rookies who have not worked with others before means that the coauthorship network will be 

fragmented into many small teams with little overlap. Increasing p increases the likelihood of having 

veterans on the team, thus increasing the chance that a team connects with other teams in the same network. 

Indeed, because veterans are on multiple teams, they are the source of overlaps throughout the network. 
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Therefore, as p increases, the formerly fragmented teams start to form a larger cohesive cluster within the 

coauthorship network.  

Interestingly, comparing the incumbency and diversity parameters (p and q) and a journal’s impact 

factor, which serves as a proxy for the overall quality of the team’s output, researchers find that the impact 

factor is positively correlated with the incumbency parameter p, but negatively correlated with the diversity 

parameter, q. This means that teams publishing in high-impact journals often have a higher fraction of 

incumbents. On the other hand, the negative correlation between the journal impact factor and diversity 

parameter, q, implies that teams suffer when they are composed of incumbents who mainly choose to work 

with prior collaborators. While these kinds of team alignments may breed familiarity, they do not breed the 

ingenuity that new team members can offer.  
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Appendix A2 

Modeling Citations 

A2.1 The Price model 

The Price model can explain the citation disparity among scientific publications, and the universal, field-

independent nature of citation distributions. To formalize the citation process, let’s have m represent the 

number of citations on a given paper’s reference list. When a scientist cites a paper, he/she does not choose 

it at random. Rather, the probability that the new paper cites paper i depends on how many citations i has 

already received,  𝑐𝑖 : 

Π𝑖 =
𝑐𝑖

𝛴𝑖𝑐𝑖
,    (A2.1.1) 

an expression known in the network science literature as preferential attachment [2].This means that when 

a scientist is choosing between two papers to cite, if one has twice as many citations as the other, she is 

about twice as likely to pick the more cited paper. 

As written, preferential attachment (A2.1.1) leads to a catch-22: If a paper has no citations yet (𝑐𝑖 =

0), it can not attract new citations. We can resolve this by acknowledging that each new paper has a finite 

initial probability of being cited for the first time, called the initial attractiveness of a paper, 𝑐0. Hence the 

probability that a paper i is cited can be modified as  

      Π𝑖 =
𝑐�̇�+𝑐0

𝛴𝑖(𝑐𝑖+𝑐0)
.      (A2.1.2) 

The model described above captures two key aspects of citations. 

1. The growth of the scientific literature. New papers are continuously published, each of which cite 

m previous papers. 
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2. Preferential attachment. The probability that an author chooses a particular paper to cite is not 

uniform, but proportional to how many citations the paper already has.  

The model with Eq. (A2.1.2) was first proposed by de Solla Price in 1976, hence it is sometimes called 

the Price model [3]. It allows us to analytically calculate the distribution of the number of citations received 

by papers, yielding: 

𝑝𝑐~(𝑐 + 𝑐0)−𝛾,       (A2.1.3) 

 where the citation exponent 𝛾 follows 

𝛾 = 2 +
𝑐0

𝑚
 .       (A2.1.4) 

For 𝑐 ≫ 𝑐0 , (A2.1.3) becomes 𝑝𝑐~𝑐−𝛾 , predicting a power-law citation distribution. Equation 

(A2.1.3) is in remarkable agreement with the citation distribution observed by Price in 1965 [4], as well as 

later measurements [5-9]. It predicts that the citation exponent (A2.1.4) is strictly greater than two. Many 

empirical measurements put the exponent around 𝛾 = 3, consistent with the case of 𝑐0 = m.  

Box A2.1: Do the Rich Really Get Richer?  

Preferential attachment relies on the assumption that new papers tend to cite highly cited papers. But how do we 

know that preferential attachment is actually present when it comes to citations? We can answer this by measuring the 

citation rate of a paper (citations per year, for example) as a function of its existing citation count [20]. If preferential 

attachment is active, then a paper’s citation rate must be linearly proportional to its total citations. Measurements have 

shown that this is indeed the case [10-12], offering direct empirical support for the presence of preferential attachment.  

When does the rich-get-richer effect start to kick in? The answer lies in the initial attractiveness parameter, 𝑐0, 

introduced in Eq. (A1.2).  According to it, when a paper has very few citations (𝑐 < 𝑐0), its chance of getting cited is 

determined mainly by the initial attractiveness, 𝑐0.  To see when a paper begins to benefit from the rich-get-richer 

effect, we can compare the predictions of Price’s model with the Barabasi-Albert model, which ignores the initial 

attractiveness [13], finding that the tipping point for preferential attachment is around 𝑐0 ≈ 7. That is, before a paper 

acquires 7 citations, its citations accumulate as though preferential attachment does not apply. Preferential attachment 

only turns on once the paper gets past this 7-citation threshold (Fig. A2.1.1). 
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Figure A2.1.1 Empirical Validation of Initial Attractiveness and Preferential Attachment. The solid line captures 

the case of initial attractiveness 𝑐0 = 7 citations. The dashed line corresponds to the case without initial attractiveness 

(𝑐0 = 0). After Eom and Fortunato [9] 

A2.2 The origins of preferential attachment 

The rich-get-richer effect might seem to suggest that each scientist meticulously keeps track of the 

citation counts of every paper, so that she can cite the more cited ones. This is obviously not the case. So 

where does preferential attachment come from? We can answer this question by inspecting the way we 

encounter and cite new papers. A common way to discover the research relevant to one’s work is by using 

the papers we have read to find other papers related to our topic of interest. That is, when we read a paper, 

we tend to inspect its reference list, ocassionally choosing to read some of the papers referenced therein. 

When we later cite a paper that we discovered by reading another paper, we are effectively “copying” a 

citation from the earlier paper.  

This copying process can help explain the origins of preferential attachment [14-21]. More 

specifically, imagine a scientist who is deciding which papers to cite in his next paper. He could pick a 

random paper from the literature, something he encountered by searching for the appropriate topic or 

keywords. If he only chooses papers in this random way, the resulting citation distribution would follow a 

Poisson distribution, meaning that every citation is a random, independent event. Imagine, however, that 

the scientist occasionally chooses to “copy” one of the references of the paper that he randomly selected 

and cite that reference instead. As simple as it is, this act of copying naturally leads to preferential 

attachment. This is because a paper with a large number of citations will inevitably be included in multiple 
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papers’ reference lists. So, the more citations a paper has, the more likely it is that it will show up on the 

reference list of the paper we chose, and so the more likely it is that we will cite it.  

The beauty of the copy model is that it does not require us to keep track of the citation counts of the 

published papers. Rather, preferential attachment arises naturally and necessarily from the model, if 

individuals only rely on local information (i.e. the reference lists of the papers they read previously) to find 

additional papers to cite. The copy model is not merely a theory—the fingerprints of this process can be 

detected directly in the data (Box A2.2). 

Box A2.2: Evidence of citation copying 

With more than 220,000 citations on Google Scholar, John P. Perdew, the pioneer of density functional theory, is 

one of the world’s most cited physicists. His 1992 Physical Review B paper [22], coauthored with Y. Wang, has alone 

collected over 20,000 citations. However, Perdew himself has noted that thousands of those citations were likely 

misplaced, as many of those authors apparently intended to cite a completely different paper. Perdew and Wang 

had coauthored another lesser-known paper just a year before their breakthrough—but in some popular 

references, the paper was mistakenly listed as the more cited 1992 paper.  

Analyzing such citation misprints can offer direct empirical evidence for citation copying [23]. Occasionally a 

reference to a certain paper will include a typo; for example, one digit of a paper’s 4-digit page number may be 

misprinted. If the same misprinted number shows up repeatedly in many reference lists, this suggests that citations 

were simply copied from earlier publications. Indeed, the chance that multiple researchers make the same mistake 

independently is very low (10−4 in this example). Yet when researchers [23] traced a particular citation misprint back 

to a relatively well-known paper [24], they found that subsequent citations were disproportionately likely to carry the 

exact same typo. Although different authors cited the article 196 different ways, the citation with the typo was 

observed 78 times, suggesting that those who cited this paper must have simply copied the reference from some other 

paper. These repeated misprints indicate that citation “copying” is not just metaphorical, but can be quite literal.  

 

A2.3 The Fit Get Richer 

Price’s model assumes that the growth rate of a paper’s citations is determined solely by its current 

number of citations. To build upon this basic model, let’s assume that citation rate is driven by both 

preferential attachment and a paper’s fitness. This is called the fitness model or the Bianconi-Barabási 

model [25, 26], which  incorporates the following two assumptions: 
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• Growth: In each time step, a new paper i with m references and fitness ƞi is published, where ƞi is a 

random number chosen from a distribution p(ƞ). Once assigned, the paper’s fitness does not change 

over time. 

• Preferential Attachment: The probability that the new paper cites an existing paper i is proportional 

to the product of paper i’s previous citations and its fitness ƞi, 

          (A2.3.1). 

In (A2.3.1) the probability’s dependence on ci captures the preferential attachment mechanism we have 

discussed earlier. Its dependence on ƞi indicates that between two papers with the same number of citations 

(ci), the one with higher fitness will attract citations at a higher rate. Hence, (A2.3.1) assures that even a 

relatively new paper, with a few citations initially, can acquire citations rapidly if it has greater fitness than 

other papers. 

A2.4 Minimal citation model for individual papers.  

In Part 3, we discussed four different mechanisms that are shown to affect the impact of a paper [13]: 

the exponential growth of science (Ch. 3.1), preferential attachment (Ch. 3.3), fitness (Ch. 3.3), and aging 

(Ch. 3.5). Combining these four mechanisms allows us to build a minimal citation model that captures the 

time evolution of the citations a paper receives [13]. To do so, we write the probability that paper i is cited 

at time t after publication as 

Π𝑖(𝑡)~𝜂𝑖𝑐𝑖
𝑡𝑃𝑖(𝑡) ,        (A2.4.1) 

In (A2.4.1), 𝜂𝑖 captures the paper’s fitness, which is a collective measure capturing the community’s 

response to the work and ci measures preferential attachment, indicating that the paper’s probability of 

being cited is proportional to the total number of citations it has received previously. Lastly, the long-term 

decay in the paper’s citations is well approximated by a log-normal survival probability function 

𝑃𝑖(𝑡) =
1

√2𝜋𝜎𝑖𝑡
𝑒𝑥𝑝 (−

(𝑙𝑛 𝑡−𝜇𝑖)2

2𝜎𝑖
2 ) ,        (A2.4.2) 
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where t is time elapsed since publication; 𝜇 captures the immediacy of impact, governing the time required 

for a paper to reach its citation peak; and 𝜎 is longevity, capturing the decay rate of citations. 

The growth rate (A2.4.1) helps us calculate the rate at which paper i acquires new citations at time 

t after its publication, 

𝑑𝑐𝑖
𝑡

𝑑𝑁
=

Π𝑖

∑ Π𝑖
𝑁
𝑖=1

 ,          (A2.4.3) 

Here N represents the total number of papers, with N(t) ≈ exp(βt), where β characterizes the rate of science’s 

exponential growth (Ch 1.1). The rate equation (A2.4.3) tells us that with the publication of each new paper, 

paper i has a smaller and smaller chance of acquiring an additional citation. The analytical solution of the 

master equation (A2.4.3) leads to the closed-form solution, (3.6.1), predicting the cumulative number of 

citations acquired by paper i at time t after publication.   
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Table A1 The average citation counts < c > up to 2012 for all subject categories in 2004 [27]. The Table 

also lists the number of publications, N, in each category.  

 

SUBJECT CATEGORIES < 𝒄 > N 

PHYSICS, ACOUSTICS 8.78 3361 

AGRICULTURE, AGRICULTURAL ECONOMICS & POLICY 7.87 592 

AGRICULTURE, DAIRY & ANIMAL SCIENCE 8.99 3868 

AGRICULTURE, MULTIDISCIPLINARY 12.07 2803 

AGRICULTURE, AGRONOMY 10.0 4767 

MEDICINE, ALLERGY 18.97 1617 

MEDICINE, ANATOMY & MORPHOLOGY 11.79 1022 

MEDICINE, ANDROLOGY 11.46 248 

MEDICINE, ANESTHESIOLOGY 10.06 4122 

PHYSICS, ASTRONOMY & ASTROPHYSICS 21.41 13392 

ENGINEERING, AUTOMATION & CONTROL SYSTEMS 12.91 3449 

BEHAVIORAL SCIENCES 16.95 3426 

BIOLOGY, BIOCHEMICAL RESEARCH METHODS 20.54 9674 

BIOLOGY, BIOCHEMISTRY & MOLECULAR BIOLOGY 26.18 43556 

BIOLOGY, BIODIVERSITY CONSERVATION 14.03 2117 

BIOLOGY 16.13 5302 

BIOPHYSICS 19.48 9609 

BIOLOGY, BIOTECHNOLOGY & APPLIED MICROBIOLOGY 19.63 13899 

MEDICINE, CARDIAC & CARDIOVASCULAR SYSTEMS 20.21 12472 

BIOLOGY, CELL & TISSUE ENGINEERING 31.4 322 

BIOLOGY, CELL BIOLOGY 32.72 17610 

CHEMISTRY, ANALYTICAL 15.04 14446 

CHEMISTRY, APPLIED 11.76 7542 

CHEMISTRY, INORGANIC & NUCLEAR 12.33 10219 

CHEMISTRY, MEDICINAL 14.62 6444 

CHEMISTRY, MULTIDISCIPLINARY 21.38 23501 

CHEMISTRY, ORGANIC 14.56 16878 
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CHEMISTRY, PHYSICAL 18.52 29735 

MEDICINE, CLINICAL NEUROLOGY 16.95 15563 

COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE 16.77 4690 

COMPUTER SCIENCE, CYBERNETICS 10.42 1068 

COMPUTER SCIENCE, HARDWARE & ARCHITECTURE 9.83 2890 

COMPUTER SCIENCE, INFORMATION SYSTEMS 11.58 4633 

COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS 10.25 5761 

COMPUTER SCIENCE, SOFTWARE ENGINEERING 8.85 4718 

COMPUTER SCIENCE, THEORY & METHODS 9.59 3918 

ENGINEERING, CONSTRUCTION & BUILDING TECHNOLOGY 7.36 2302 

MEDICINE, CRITICAL CARE MEDICINE 18.15 3116 

CHEMISTRY, CRYSTALLOGRAPHY 8.1 7032 

MEDICINE, ORAL SURGERY & MEDICINE 11.11 5040 

MEDICINE, DERMATOLOGY 10.08 4808 

BIOLOGY, DEVELOPMENTAL BIOLOGY 31.01 3289 

ECOLOGY 18.02 9860 

EDUCATION, SCIENTIFIC DISCIPLINES 6.32 1930 

CHEMISTRY, ELECTROCHEMISTRY 17.34 5539 

MEDICINE, EMERGENCY MEDICINE 7.59 1661 

ENDOCRINOLOGY & METABOLISM 21.68 11259 

ENGINEERING, ENERGY & FUELS 11.9 5977 

ENGINEERING, AEROSPACE 4.7 1902 

ENGINEERING, BIOMEDICAL 18.82 4717 

ENGINEERING, CHEMICAL 10.78 13612 

ENGINEERING, CIVIL 7.0 5972 

ENGINEERING, ELECTRICAL & ELECTRONIC 11.32 26432 

ENGINEERING, ENVIRONMENTAL 16.39 4850 

ENGINEERING, GEOLOGICAL 7.08 1406 

ENGINEERING, INDUSTRIAL 8.28 3109 

ENGINEERING, MANUFACTURING 8.28 3385 

ENGINEERING, MARINE 1.06 489 

ENGINEERING, MECHANICAL 7.54 8503 
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ENGINEERING, MULTIDISCIPLINARY 7.3 4443 

ENGINEERING, OCEAN 7.5 874 

ENGINEERING, PETROLEUM 2.14 1613 

BIOLOGY, ENTOMOLOGY 7.76 4371 

ENVIRONMENTAL SCIENCES 14.88 16938 

BIOLOGY, EVOLUTIONARY BIOLOGY 22.88 3170 

AGRICULTURE,  FISHERIES 10.79 3495 

FOOD SCIENCE & TECHNOLOGY 11.97 9457 

FORESTRY 11.42 2811 

MEDICINE, GASTROENTEROLOGY & HEPATOLOGY 19.03 7518 

BIOLOGY, GENETICS & HEREDITY 25.56 12947 

GEOGRAPHY, GEOCHEMISTRY & GEOPHYSICS 15.79 5777 

GEOGRAPHY, PHYSICAL 14.6 2230 

GEOGRAPHY, GEOLOGY 12.42 1604 

GEOGRAPHY, MULTIDISCIPLINARY 11.71 10683 

GERIATRICS & GERONTOLOGY 15.1 2387 

MEDICINE, HEALTH CARE SCIENCES & SERVICES 11.78 3577 

MEDICINE, HEMATOLOGY 25.88 9875 

HISTORY & PHILOSOPHY OF SCIENCE 4.18 919 

IMAGING SCIENCE & PHOTOGRAPHIC TECHNOLOGY 16.28 1136 

MEDICINE, IMMUNOLOGY 22.17 17048 

MEDICINE, INFECTIOUS DISEASES 18.47 7727 

ENGINEERING, INSTRUMENTS & INSTRUMENTATION 8.28 8599 

MEDICINE, INTEGRATIVE & COMPLEMENTARY MEDICINE 10.45 885 

LIMNOLOGY 13.27 1208 

BIOLOGY, MARINE & FRESHWATER BIOLOGY 12.33 6939 

MATERIALS SCIENCE, BIOMATERIALS 23.02 2082 

MATERIALS SCIENCE, CERAMICS 7.87 3443 

MATERIALS SCIENCE, CHARACTERIZATION & TESTING 4.59 1293 

MATERIALS SCIENCE, COATINGS & FILMS 11.03 4993 

MATERIALS SCIENCE, COMPOSITES 9.44 1539 

MATERIALS SCIENCE, MULTIDISCIPLINARY 13.68 34391 
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MATERIALS SCIENCE, PAPER & WOOD 4.67 1048 

MATERIALS SCIENCE, TEXTILES 5.72 949 

BIOLOGY, MATHEMATICAL & COMPUTATIONAL BIOLOGY 20.05 2304 

MATHEMATICS 4.61 13390 

MATHEMATICS, APPLIED 6.65 11863 

MATHEMATICS, INTERDISCIPLINARY APPLICATIONS 10.37 4370 

MECHANICS 9.49 10165 

MEDICAL ETHICS 6.27 443 

MEDICINE, MEDICAL INFORMATICS 11.66 1196 

MEDICINE, MEDICAL LABORATORY TECHNOLOGY 11.13 2210 

MEDICINE, GENERAL & INTERNAL 19.97 14814 

MEDICINE, LEGAL 7.02 993 

MEDICINE, RESEARCH & EXPERIMENTAL 20.29 8861 

METALLURGY & METALLURGICAL ENGINEERING 8.12 8077 

PHYSICS, METEOROLOGY & ATMOSPHERIC SCIENCES 15.86 6720 

BIOLOGY, MICROBIOLOGY 19.84 13224 

MICROSCOPY 9.9 674 

ENGINEERING, MINERALOGY 10.95 1724 

ENGINEERING, MINING & MINERAL PROCESSING 6.01 1553 

MULTIDISCIPLINARY SCIENCES 48.85 10909 

BIOLOGY, MYCOLOGY 10.45 1019 

NANOSCIENCE & NANOTECHNOLOGY 20.63 7183 

BIOLOGY, NEUROIMAGING 25.95 1430 

BIOLOGY, NEUROSCIENCES 23.48 23796 

ENGINEERING, NUCLEAR SCIENCE & TECHNOLOGY 6.03 7589 

MEDICINE, NURSING 7.86 2365 

MEDICINE, NUTRITION & DIETETICS 18.44 4767 

MEDICINE, OBSTETRICS & GYNECOLOGY 11.78 7384 

GEOGRAPHY, OCEANOGRAPHY 13.66 4159 

MEDICINE, ONCOLOGY 23.44 19647 

OPERATIONS RESEARCH & MANAGEMENT SCIENCE 10.69 3902 

MEDICINE, OPHTHALMOLOGY 11.97 6359 
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PHYSICS, OPTICS 12.16 12693 

BIOLOGY, ORNITHOLOGY 8.36 928 

MEDICINE, ORTHOPEDICS 13.0 5607 

MEDICINE, OTORHINOLARYNGOLOGY 9.01 3235 

BIOLOGY, PALEONTOLOGY 9.7 1559 

PARASITOLOGY 11.06 2239 

MEDICINE, PATHOLOGY 14.42 5694 

MEDICINE, PEDIATRICS 10.69 9553 

MEDICINE, PERIPHERAL VASCULAR DISEASE 25.41 8353 

MEDICINE, PHARMACOLOGY & PHARMACY 14.65 20991 

PHYSICS, APPLIED 14.24 28999 

PHYSICS, ATOMIC, MOLECULAR & CHEMICAL 14.32 12973 

PHYSICS, CONDENSED MATTER 13.39 22654 

PHYSICS, FLUIDS & PLASMAS 12.31 5648 

PHYSICS, MATHEMATICAL 11.38 6624 

PHYSICS, MULTIDISCIPLINARY 16.17 15438 

PHYSICS, NUCLEAR 10.24 4987 

PHYSICS, PARTICLES & FIELDS 14.33 8759 

PHYSIOLOGY 18.73 7846 

BIOLOGY, PLANT SCIENCES 15.45 12844 

MATERIALS SCIENCE, POLYMER SCIENCE 14.16 11170 

MEDICINE, PRIMARY HEALTH CARE 6.93 1140 

MEDICINE, PSYCHIATRY 20.88 9108 

MEDICINE, PSYCHOLOGY 17.93 2942 

MEDICINE, PUBLIC, ENVIRONMENTAL & OCCUPATIONAL 

HEALTH 

15.31 10171 

MEDICINE, RADIOLOGY, NUCLEAR MEDICINE & MEDICAL 

IMAGING 

15.78 12165 

REHABILITATION 11.45 1863 

ENGINEERING, REMOTE SENSING 14.94 1301 

BIOLOGY, REPRODUCTIVE BIOLOGY 15.26 3710 

MEDICINE, RESPIRATORY SYSTEM 16.34 6259 
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MEDICINE, RHEUMATOLOGY 18.28 3058 

ENGINEERING, ROBOTICS 11.17 497 

SOIL SCIENCE 11.08 2766 

MATERIALS SCIENCE, SPECTROSCOPY 9.56 6648 

SPORT SCIENCES 13.44 4701 

MATHEMATICS, STATISTICS & PROBABILITY 9.04 4922 

SUBSTANCE ABUSE 16.99 1049 

MEDICINE, SURGERY 12.25 22687 

ENGINEERING, TELECOMMUNICATIONS 9.97 5196 

PHYSICS, THERMODYNAMICS 9.76 3809 

MEDICINE, TOXICOLOGY 13.82 6214 

MEDICINE, TRANSPLANTATION 13.21 4665 

MEDICINE, TRANSPORTATION SCIENCE & TECHNOLOGY 5.44 1562 

MEDICINE, TROPICAL MEDICINE 11.39 1298 

MEDICINE, UROLOGY & NEPHROLOGY 15.58 7784 

MEDICINE, VETERINARY SCIENCES 7.64 7967 

MEDICINE, VIROLOGY 21.66 4713 

WATER RESOURCES 10.86 5490 

BIOLOGY, ZOOLOGY 10.07 6684 
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