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S1 Data description

In this project, we compiled a comprehensive database consisting of three large-scale datasets

across three different domains: Dataset D1 contains submission histories of individual scientists

in the US National Institutes of Health (NIH) grant system. D2 contains profiles of innovators

together with their startup ventures recorded in the VentureXpert investment database. D3 records

terrorist organizations and attacks retrieved from the Global Terrorism Database.

S1.1 NIH grant application dataset

Our first dataset contains all R01 grant applications (776,721 in total) that have been ever submitted

by 139,091 scientists to NIH from 1985 to 2015. For each grant application, we obtained its

evaluation score (if reviewed on a panel), a unique identifier for the PI, the PI’s name, and the

application outcome (funded/not funded).

The NIH grant application dataset represents an excellent setting to study dynamics of fail-

ure for several reasons. First, it contains ground-truth information for both successes and failures.

Second, as the world’s largest public funder for biomedical research, NIH is the dominant funding

source for biomedical scientists in the US29, 51. Indeed we tracked funding acknowledgment infor-

mation cited within biomedical research papers, finding among all PubMed papers published in the

US (2008 to 2015), NIH represents the majority of funding sources (81% out of top 10 agencies).

R01 is the most common research funding mechanism within the NIH27–29, accounting for the
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majority of the total funding. To compare the dynamical pattern between R01 and other granting

mechanisms, we downloaded successful NIH grants from other mechanisms from NIH Research

Portfolio Online Reporting Tools (RePORT), finding R01 grants are uniformly distributed within

all NIH grants one obtains throughout a career.

Here we extract all new grant applications (excluding renewals, revisions and resubmissions)

to reconstruct sequences of attempts. We truncate each sequence if (i) the individual gets one grant

(successful group); or (ii) the individual has been inactive for a long period (unsuccessful group).

We show results using all failure samples in the main text. We also repeated our results using

just the first sequence of failures—failure streak without prior success, finding our conclusions

remain the same (Extended Data Fig. 6). We also find that the observed patterns are not affected

by potential periodicity of grant applications, and the results are robust against such variations.

Indeed, we find the results remain the same if we add to timestamp of each attempt an artificial

random noise at the scale of review cycles (∼ 120 days).

S1.2 VentureXpert investment dataset

Our second dataset traces start-up investment records from the VentureXpert (SDC Platinum)

database, including 58,111 startup companies and 163,106 investment rounds from 1970 to 2016.

For each investment we obtained information on investment amount, funding date, company name

and a full list of innovators involved. We then link these records with company information on Ini-

tial Public Offering and Merger & Acquisitions as outcome variables. Following the entrepreneur-
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ship literature31, 32, 52, we match individual entrepreneurs and startup ventures by linking each com-

pany with people listed as executives or board members at the first funding round. One advantage

of this dataset is that 98.7% records have complete information of first and last names rather than

initials, allowing us to construct career trajectories of 253,579 innovators.

Among the existing datasets capturing startups, the VentureXpert database, the official database

of the National Venture Capital Association is among the most comprehensive and authoritative

databases30. To further explore the coverage of the database, we compare the number of IPOs

within our data versus US total counts, finding our dataset captures a significant fractions of IPOs,

with the ratio between the two statistics remaining stable over time, documenting the reliability

of this dataset. We also cross-validated individual entrepreneurs coverage with Crunchbase. We

select top 1000 serial executives and board members ranked by the number of different jobs in

Crunchbase, finding more than 70% of the profiles are included in VentureXpert.

Another challenge in modeling dynamics of failure in startup datasets is the ambiguity of

‘failures’53, which could include bankruptcy, termination to prevent future losses, and deviation

from desired results. Recognizing the complexity of this issue, here we closely follow existing

literature on venture capital and serial entrepreneurship31, 32. We focus on all portfolio companies

that have received at least one round of funding, and define those who went public or got acquired

or merged at high values (percentile as compared with all M&As in the same year) as successes.

We performed different measurement variations by changing the percentile threshold (1% and 5%)

and also by only including IPOs (Extended Data Fig. 7). We find our results remain the same. If
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a company obtained its first investment but did not succeed within a certain period, this venture is

marked as a failure. In this dataset we treat each new venture as an attempt, starting at the date

of first round investment. Similar to D1, sequences of attempts by each individual are collected

into a sequence, where the stopping criterion is defined by either (i) the individual is involved in

one company that eventually achieved IPO or high-value M&As (successful group); or (ii) the

individual has been inactive for a long period without success (unsuccessful group).

S1.3 GTD terrorism attack dataset

Our third dataset contains 170,350 terrorist attacks by 3,178 organizations from 1970 to 2017,

collected by the Global Terrorism Database, one of the most systematic databases on domestic and

transnational terrorist events33. For each attack we obtain information on its date, type, location,

and consequences in terms of the number of people killed and wounded. Some records in this

corpus are based on speculation or dubious claims of responsibility, which are discarded in our

analysis to ensure the data quality.

There lacks a clear definition of ‘success’ for terrorist attacks, partly due to their diverse

intents and consequences. To be consistent with our empirical steps in D1 and D2, here we treat

an attack as successful if it killed at least one victim. To this end, we collected sequences of

attacks of each terrorist organization, and classify the samples as (i) the organization killed at least

one people (successful group); or (ii) the organization has been inactive for a long period without

success (unsuccessful group).
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One potential concern with this definition is that goals of terrorist attacks differ, and not

all attacks are aimed at killing victims. This concern is somewhat alleviated since (1) 84.7%

the attacks were targeted at human beings (i.e. assassination, bombing/explosion and assault)

and (2) human-targeted attacks were uniformly distributed within full attack history of terrorist

organizations. To rule out the possibility that samples in unsuccessful group are simply those who

do not aim for killing victims, we further remove samples from the unsuccessful group if more than

half of the events in this sample are not human-targeted. We also performed robustness checks

by performing the same operation on successful group or using the full sample in unsuccessful

group (Extended Data Fig. 8), finding our results remain robust. Although these checks do not

necessarily account for the diverse goals of terrorist attacks, they do consistently show no evidence

of systematic bias.

S1.4 Data limitations

Although the three datasets are among the largest in their respective domains, there are limitations

of our data that readers should keep in mind.

First, despite the scale of our data, it remains difficult to obtain the full coverage of all

attempts. For example, one might apply for grants from other funding agencies, found startup

ventures without VC investments, or stop launching terrorist attacks for other activities. Further,

agents who failed may also change their goals and subsequently transfer to other systems.

Second, data may contain missing values, resulting in false negatives. For example, terrorist
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groups may not claim the events, especially when the events are small. For startups, not all M&As

have the dollar amount associated with them, and we can only look at those who have M&A values.

Third, while individuals recorded in D1 are uniquely identified with IDs, individuals and

organizations in D2 and D3 are recorded and identified by full name, which may be affected by

name ambiguity or name-changing issues.

Fourth, while grant applications in D1 are binary events–either funded or unfunded, startup

funding in D2 and terror attacks in D3 have varied definitions for success and failure. Take startup

ventures as an example, and consider the growing trend of large startups to remain private despite

having large valuations and funding. Unicorn ventures like Airbnb or WeWork could already be

considered successful despite not having had an IPO or being acquired (see S7.3). For terrorist

organizations, their intents differ by group ideology, and vary over time, hence their goals may not

always be related to lethality.

While our systematic validation efforts in S1.1-S1.3 and robustness checks in S7.1-7.5 have

not uncovered any potential biases, readers should keep in mind of the existence of such factors.
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S2 Related work and models

S2.1 Learning literature

This paper is closely related to the rich literature on learning and failures. Canonical frameworks

in understanding how people react to failures20, 39, 53–57 have identified several key factors that could

impact learning, including individual characteristics and organizational structures and strategies.

These findings have also prompted quantitative studies using failure records across different in-

dustries, ranging from entrepreneurship31, 32 to commercial banking58, from healthcare59 to coal

mining60 to trains61, and airlines62 to orbital launch vehicles63.

Another relevant line of inquiry is in psychology and organization behavior, which con-

cerns learning curves from both theoretical19–24, 34, 35, 38–40, 43, 44, 64–66 and empirical22, 38–41, 45, 67 per-

spectives, quantifying how performance and efficiency improve with experience. One key result is

the famous Wright’s law45, i.e. the power law form of cost reduction.

Next we review a series of major models and compare key predictions with our empirical

results. We summarize all these models in Table S2.

S2.2 Stochastic models with memory

One school of thought can be viewed as modeling the dependence structure among failures. Indeed,

the failure of the chance model suggests that non-trivial dependence may be essential for modeling
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the fat-tailed length distribution of failure streaks, which raises an important question: Could other

stochastic processes (Markov process, random walk, autoregressive model, etc.) account for our

observations? Indeed, if we consider a general framework of fixed dependence as follows

Sn = fn(S1, S2, · · · , Sn−1), (S1)

where Sn denotes the performance at the n-th attempt and fn can be a deterministic or stochas-

tic non-decreasing mapping. This framework covers a wide range of stochastic processes, e.g.

fn(S1, · · · , Sn−1) = fn(Sn−1) for a discrete space of Sn leads to Markov process, fn(S1, · · · , Sn−1) =

Sn−1 + εn leads to random walk, fn(S1, · · · , Sn−1) =
∑p

i=1 φiSn−i + εn leads to autoregressive

model. We note that if this is true, we can obtain

Sn = fn(S1, f1(S1), · · · , fn−1(S1, f1(S1), · · · )) ≡ gn(f1, · · · , fn)(S1) (S2)

Hence, Sn can be formulated as a non-decreasing function of S1, indicating that there should be

detectable ‘fitness’ differences in the first attempt. Indeed, these results indicate that if there exists

no difference in the dependency structure fn, the differences in outcomes should be at least partly

contributed by performance at the first attempt, which contradicts with our data. This hypothesis

also cannot explain the fat-tail length distribution of failure streaks (S3.8).

S2.3 Adaptation models

The evolutionary perspective for individual and organizational learning assumes that the agent

improves through updating information and belief on different alternatives. Here we discuss three

representative models, each assuming a finite pool of available options.
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S2.3.1 Crossman’s model

Crossman’s model, first proposed in68, aims to explain the temporal dynamics observed in individ-

ual tasks. The model suggests a process from r methods Mi (1 ≤ i ≤ r), each with a time cost

ti. The individual improves operation strategy through changing probabilities for using different

methods, i.e. pi where
∑r

i=1 pi = 1. At the n-th trial, the expected time cost can be formulated as

T (n) =
r∑
i=1

tipi(n) (S3)

The change of probability for choosing method Mi is proportional to the difference between its

time cost and current average time cost, i.e.

pi(n+ 1)− pi(n) = −k(ti − T (n)) (S4)

Therefore, the time cost decays as

T (n+ 1) = T (n)− k
r∑
i=1

pi(ti − T (n))2 (S5)

S2.3.2 NK model

NK model, initially proposed by Kauffman69 is a canonical model in organizational learning70.

Consider a rugged fitness space of N dimensions X = (x1, · · · , xN), where xi ∈ {0, 1}. The

fitness score of each possibility is the summation of interaction among K adjacent dimensions,

that writes

φ(x) =
N∑
i=1

φi(xi, · · · , xi+K) (S6)
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One heuristic searching strategy in this rugged landscape concerns two options:

(1) Local search, i.e., walk to a neighbor, y, which satisfies |y − x| = 1.

(2) Global search, i.e., jump to a new node randomly.

S2.3.3 Denrell and March’s model

Denrell and March proposed a simple adaptation model to understand the interplay between infor-

mation and adaptation, explaining why people have bias against novel and risky choices71. In this

model, Pt, defined as the probability for the first option to be chosen at time t, depends on its past

probability Pt−1 and current performance. If the option leads to better outcome compared with the

other, one updates

Pt+1 = Pt + a(1− Pt) (S7)

otherwise,

Pt+1 = (1− a)Pt (S8)

All three models presented here can mimic specific performance or efficiency trajectory as

one tries repeatedly. The main issue with these models is that they all base on a finite space

of possible options, which leads to a limit in performance and efficiency improvement that one

cannot overcome, which contradicts with our data.
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S2.4 Search models

Search models assume an iterative process, where one decides whether to use existing compo-

nents or try new ones based on component quality. Such models are often characterized by an

improvement in the objective performance function because of the extreme values theory, i.e. as

one always selects the best version from experimentation, she will eventually arrive at the version

that is reasonably good.

S2.4.1 Roberts’ model

Robert proposed a model based on greedy algorithms65. To understand the universal learning

process, the model assumes production efficiency p as lognormal, following

x = b ln p (S9)

where x follows the standard normal distribution N(0, 1). Each time the agent randomly selects a

sample x′ and compares it with current efficiency x, adopting the new method when x′ < x − a.

The model predicts

ln p ∼ lnN/ab (S10)

S2.4.2 Muth’s model

Muth’s model43 builds on a simple assumption: the individual tries a new method at each trial and

uses the new method if it costs less. The model further assumes appropriate regularity conditions
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for the cumulative distribution function (CDF) of cost F , e.g.

lim
x→x0

F (x)

(x− x0)k
= c (S11)

where x0 is the limiting cost of production. The model predicts the expected cost E[Xn] of the

n-th production as

E[Xn] = x0 + Γ(1 + 1/k)(cn)−1/k (S12)

Muth’s model is an elegant model explaining the emergence of power law scaling and can be

extended to dependent component cases.

S2.4.3 McNerney’s model

McNerney et al further extended Muth’s model by assuming a power law distribution of costs of

each component (f(ci) ∼ xγ−1i ) and using design structure matrix to characterize the dependency

among different components44. The model predicts the cost y decreases as a function of produc-

tions n following

y(n) ∼ n−1/γd
∗

(S13)

where d∗ is the design complexity and equals to 1 when all components are independent.

Search models successfully explain the emergence of power-law scaling in repeated attempts

and serve as the basis of our frameworks (e.g. k → ∞ limit). Yet they cannot account for the co-

existence of two groups and their diverging patterns.
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S2.5 Individual learning models

There has also been an active line of inquiry in explaining practice curves in individual tasks41, 42, 46, 72.

These models use psychology models as well as cognitive theories to explain ‘practice makes per-

fect’.

S2.5.1 Newell and Rosenbloom’s chunking model

To explain the power-law scaling observed in human task performance, e.g. inverted text read-

ing and ten-finger game, Newell and Rosenbloom modeled the learning process using chunking

theory41. In this model, there is a tree structure for goal hierarchies of height H and the speed-up

of task completing is due to the emergence of higher-order chunks. The current highest order of

chunk is denoted as η, leading to

dT

dN
=
dT

dη

dη

dN
(S14)

The model further assumes each non-terminal goal has β non-terminal subgoals and ω terminal

subgoals. As one constructs chunks of higher levels, the corresponding time to perform a new

attempt decreases exponentially following

dT

dη
∼ βH−η (S15)

If we also assume the chunking rate is linear with respect to time and the birth of a single level-h

chunk requires time s(h), we have

dη

dN
∼ βη−H

s(η)
T (S16)
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Therefore, if s(η), the number of possible states for goals at level η (complexity at this level), takes

an exponential form as s(η) ∼ eαη, which is consistent with the tree structure, we have

dT

dN
∼ (T + E)−x

T
(S17)

which follows a power law scaling. Hence, by combining two exponential forms in a tree structure,

the model successfully derives the power law scaling.

S2.5.2 Anderson’s model

Based on ACT’s strengthening process, Anderson developed a model explaining cost decay42. The

model assumes the amount of practice as S and the production execution in ACT takes the form

T = c+ aS−1 (S18)

The amount of past practice also decays as a power law of practice time:

S =
P−1∑
i=0

s(i, P ) ∼
P∑
i=1

i−d ∼ P 1−d (S19)

Therefore, we have

T = C ′ + A′P d−1 (S20)

The two models are very relevant to our settings and can predict power law temporal scaling

in the successful group. They represent two fundamental classes of cognitive architectures in

related studies: ACT and Soar (and their variants)50, highlighting the role of memory and chunks in

learning process. Yet such mechanisms are more appropriate for modeling simple tasks rather than

complex innovative ones and cannot account for the co-emergence of success and unsuccessful

groups.
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S2.6 Urn models

Urn model and its variants are among the canonical models in social physics as well as innovation

process73. This model family is closely related to the famous Heaps’ law74, originally predicting

that the number of distinct words S in a paragraph of length n scales as

S(n) ∼ nβ, 0 < β ≤ 1 (S21)

Note that if we assume generating a new word costs unit time, we know the expected time spent

on the n-th ‘word’ follows

tn ∼ nβ−1 ≡ n−γ, 0 < γ ≤ 1 (S22)

which recovers our empirical findings. Here we review several generative models explaining this

scaling.

S2.6.1 Simon’s model

Simon’s model is among the earliest frameworks modeling ‘cumulative advantages’75. It assumes

that (1) There is always constant probability p for an agent to take a new word for the next element;

(2) Otherwise (with probability 1−p) the agent reuses past words based on frequency, i.e. randomly

select a word from the past sequence. This model predicts a linear scaling between S and n i.e.

β = 1, which can only explain the emergence of the unsuccessful group.

18



S2.6.2 Tria’s model

By extending studies on urn model, Tria et al76 assume an urn U of ideas and a sequence of S to

generate. Every time an element is sampled from U to S, ρ copies are put back to U . Further, if

this sampled idea is new in S, it triggers ν adjacent new ideas, hence the number of different ideas

in a sequence follows the master equation

dD

dt
≈ νD

ρt+ (ν + 1)D
(S23)

The solution reveals that D grows linearly with t for ν > ρ, but follows Heaps’ law D ∼ tν/ρ for

ν < ρ. These predictions are similar to the first phase transition point k∗ in our model.

S2.6.3 Iacopini’s model

To further document the impact of past transition sequence in innovative attempts, a recent paper77

proposed a network-based model, where ideas are represented as nodes, and one can travel from

one idea to another when they are linked by a weight. The process is set to be a weighted random

walk on networks, following

P t(i→ j) =
wtij∑
k w

t
ik

(S24)

When a specific path i→ j is traveled, the weight of this edge is updated

wt+1
ij = wtij + δw (S25)

Depending on different network structures, the model can lead to scaling S ∼ nβ with varying β.

While this class of models does not capture the performance dynamics underlying failures,
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they are highly relevant to our study in that their predictions are consistent with the temporal

patterns observed in our data.

S2.7 Other models

S2.7.1 Levy’s model

Levy modeled the improvement of productivity based on the limited range of output denoted as

P 40. Given the current rate of production after producing q items, Q(q), the improvement of

production rate is proportional to the amount that the process can improve, i.e.

dQ(q)

dq
= µ[P −Q(q)] (S26)

leading to

Q(q) = P [1− ea+µq] (S27)

Levy’s model captures a kind of production process where the final plateau part is significant, but

it fails to predict the power-law form of productivity improvement.

S2.7.2 Shrager’s model

By collecting and analyzing data of path length in the bit game, Shrager et al developed a graph-

dynamic model for route-finding in ER networksG(n, p)23. The authors proposed a strategy where

the individual randomly selects an edge after deleting the ones moving away from the destination

with probability r. The number of trials increases the network density p linearly and the cost is the
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path length of the whole process s. For r near 0, the model predicts

s ∼ 2

p
(1− r)lnn/ ln(np) (S28)

while for r near 1, the model predicts

s ∼ lnn/ ln(np) (S29)

S2.7.3 Sahal’s model

Sahal explains the progress function in industry productions through probabilistic and deterministic

models64. The model assumes different manpower levels and X(s, t) to be the number of product

quantities requiring s amount of manpower at time t. If we assume the improvement across u

manpower levels does not depend on the current level and can be formulated as p(u), yielding

X(s, t+ 1) =
1∑

u=−n

X(s− u, t)p(u) (S30)

If we define X(s) = limt→∞X(s, t), the solution of this equation can be formulated as

X(s) = bs, 0 < b < 1 (S31)

The model further assumes levels manpower are distributed on a logarithmic scale with width h,

obtaining

F (Y ) ∼ Y − log b/h (S32)

where F (Y ) is the number of product quantities requiring manpower greater than Y .
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S2.7.4 Johnson’s model

Johnson et al reported a similar scaling from the time interval of terrorist attacks and other human

confrontations35. An illustrative model for this scenario considers confrontation between ‘Red

Queen’ and ‘Blue King’, and the advantage of Red Queen after n events, R(n), can be formulated

as

R(n) =
n∑
i=1

xi (S33)

where xi takes value +d or −d with probability 1/2. Depending on the auto-correlation of xi, one

can get

R(n) ∼ nbd, 0 ≤ b ≤ 1 (S34)

Taking the inverse of the advantage, we get the attack rate scales as a negative power law of n, i.e.

τn ∼ n−b, 0 ≤ b ≤ 1 (S35)

S2.7.5 Clauset’s model

Clauset’s model34 also predicts the temporal pattern of terrorist attacks, but in a very different

way from Johnson’s model35. Indeed, if we assume that the size of terrorism organizations scales

linearly with its past attacks, i.e.

s(n+ 1) = s(n) + η (S36)

The model further assumes a new takes time as the inverse of organization size, i.e.

∆t ∼ 1/s (S37)
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Taken together, we have

∆t ∼ 1/n (S38)

This model successfully links group size to temporal dynamics, predicting a power law scaling. Yet

it only applies to group dynamics and the exponent of power law in the original linear assumption

is restricted to be -1.

One commonality among these models is that they lack predictions of the interplay between

performance and time. By contrast, our data show that the temporal scaling cannot be simply

explained by agents optimizing time cost tn since the performance also improves for the successful

group. These models also cannot explain the co-existence of success and unsuccessful groups

observed in our data.

S2.8 Summary of contributions

To sum up, despite the ubiquity of power laws across a wide variety of settings14, 15, 17, 47–49 and the

foundational literature on learning curves19, 21, 41–46, none of the existing models, to our knowledge,

anticipated the existence of the early signals documented in the paper (Table S2). As such, the pa-

per makes several contributions which we next summarize in terms of its empirical measurements,

theoretical contributions, and predictive signals:

1. Empirical contributions: Our quantitative understanding of the dynamics of failure is im-

portant, but has remained limited, due to difficulties in collecting large-scale datasets that

23



capture failures. This highlights the first contribution of our paper – to be able to assemble

large datasets from three disparate domains that contain records of both success and failure

cases.

2. Theoretical contributions: These new datasets allow us to derive among the first empirical

evidence about the dynamics of failure to test existing models. In particular, Figure 1 high-

lights the fundamental tension with existing modeling frameworks, and the simplicity of

measurements in Fig. 1 highlights the paucity of quantitative approaches thus far to model

failures, highlighting the key contribution of our paper – By establishing a new theoretical

basis for understanding failures, our paper not only explains empirical patterns that existing

models cannot capture (Fig. 1), but also predict new patterns that existing models did not an-

ticipate (Fig. 3). As such, the model is unique in its ability to (i) predict two fundamentally

different behaviors simultaneously at two extremes (e.g., k = 0 and k = ∞), hence serving

as the first model to unify existing paradigms; and (ii) reveal a highly discontinuous pattern

between progression and stagnation regimes. This further leads to four new predictions, all

of which are tested and validated across our three datasets. This was only possible thanks to

the new theoretical insights, and in particular the novel predictions that our model offers.

3. Predictive signals: Our findings unveil identifiable yet previously unknown early signals that

allow us to distinguish failure dynamics that will lead to ultimate victory or defeat. Tra-

ditionally the primary distinction between ultimate victory and defeat has been attributed

to differences in luck, learning strategies or individual characteristics, but here our model

offers an important new explanation with crucial implications: Even in the absence of dis-
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tinguishing initial characteristics, agents may experience fundamentally different outcomes.

As such, our model shows that the success and unsuccessful groups may be initially simi-

lar, but each follows their respective, highly predictable patterns, distinguishable long before

the eventual outcome becomes apparent. Specifically, we show that observing the timing of

each attempt alone can help us identify those more likely to succeed. Considering the myriad

factors related to success in a grant proposal/startup company/terrorist attack, this level of

predictive power achieved by a singular, simple predictor is somewhat unexpected.

S3 Modeling failure dynamics

S3.1 The k model

In order to formulate a new attempt, the individual needs to go through every component, and

decide what to do next. For a past attempt j, each component i is characterized by an evaluation

score x(i)j , which falls between 0 and 1. The agent can either create a new version (with probability

p), or with probability 1 − p reuse an old one by choosing among past versions. The main cost

of creating a new version is time. Here we assume each new version takes one unit of time, and

upon creation takes up an evaluation score, drawn randomly from a fixed distribution ρ(x). Real

systems are likely to differ in their specific score distributions. Here for simplicity, we assume

ρ(x) follows a uniform distribution on [0, 1], approximating the percentile of any underlying score

distributions real systems may follow. One difference between our model and canonical learning

curve models44 is that one has little information on the new versions until it gets implemented and
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evaluated, hence new versions are not guaranteed to increase or decrease their score.

Of the many factors that may influence p, one key factor is the quality of existing versions.

Denoting with x∗ the best score among past versions, we expect p to be a function of x∗. Indeed,

consider the two extreme cases. If x∗ → 0, existing versions of this component have among

the worst scores hence a high potential to be improved upon with a new version. Therefore the

likelihood of creating a new version is high, i.e., p → 1. On the other hand, x∗ → 1 indicates

an already excellent version, corresponding to a decreased incentive to create a new one (p → 0).

Reusing the existing best version allows the particular component to retain its score x∗ and also

avoids incurring additional time cost the individual can avoid spending time working on. To this

end, considering P (x ≥ x∗) = 1− x∗ as the potential to improve on existing versions, we assume

p = (1− x∗)α, where α > 0 characterizes an individual’s propensity to create new versions given

the quality of existing versions. The higher this potential, the more likely one may create a new

version71.

The dynamics of quality score, xn, can be captured by a higher-order Markov process of

memory length k, following

x∗n = max{xn−k, · · · , xn−1} (S39)

xn ∼


U [0, 1], w.p. (1− x∗n)α

δ(x− x∗n), w.p. 1− (1− x∗n)α

(S40)

where we assume xn = 0 for all n < 0.

The parameter k in our model can be viewed as approximating the ‘memory’ of past ver-
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sions. The rationale of using k for the model is rooted in the learning literature, showing that the

general notion of ‘forgetting’ takes multiple forms, often representing a combination of individual,

organizational and environmental factors. Indeed, several relevant factors may be at play, which

can generate patterns similar to ‘forgetting’. For example, in rapidly shifting innovation domains,

not all past failures remain useful over time, and some become obsolete. Consider the concept

of ‘knowledge depreciation’78, which could also apply in our settings as environments (scientific

knowledge/capital markets/security situations) evolve over time, such that past experience could

become useless even if memorized. For example, an NIH proposal four failures ago may become

irrelevant as the ideas proposed have been dispositively proven wrong, or published by the PI or

another research group79, 80. Similarly, startup ideas from the dot com era may be irrelevant in

the era of AI and Blockchain32. Terrorist tactics can also depreciate over time, as past strategies

attracted media coverage and gave rise to tighter security measures defending against them35. This

line of reasoning supports the idea that recent attempts are most relevant. It is also consistent with

the learning literature, which suggests knowledge ‘forgetting’ can happen in distinct ways, either

voluntarily or involuntarily81. Motivated by these reasons, here we select a single parameter k to

encapsulate a variety of potential contributing factors.

To solve the model, let’s first look at two extreme cases.
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S3.2 Independent model (k = 0)

Here we first consider a simple case when k = 0, i.e. there lacks any reusable materials in memory

as one tries again. In this case, one creates a new version every time, hence for all n we have

xn ∼ U [0, 1] (S41)

and

tn ≡ 1 (S42)

S3.3 Learning from all failures (k →∞)

We now turn to another extreme: learn from all past failures. We can rewrite the process as

x∗n = max{x0, · · · , xn−1} (S43)

xn ∼


U [0, 1], w.p. (1− x∗n)α

δ(x∗n), w.p. 1− (1− x∗n)α

(S44)

Here we focus on the dynamics of x∗, obtaining

x∗n+1 ∼


U [x∗n, 1], w.p. (1− x∗n)α+1

δ(x∗n), w.p. 1− (1− x∗n)α+1

(S45)

where x∗1 ∼ U [0, 1]. To this end, let us denote fn as the probability density function of x∗n, obtain-

inng

fn+1(x) = fn(x)(1− (1− x)α+1) +

∫ x

0

fn(y)(1− y)αdy (S46)
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with f1(x) ≡ 1 for x ∈ [0, 1]. By induction we obtain

fn(x) ∼ [1− (1− x)α+1]n−1 (S47)

The normalization constant equals to

∫ 1

0

[1− (1− x)α+1]n−1dx =

∫ 1

0

x−α(1− xα+1)n−1dxα+1/(α + 1) = B(n, 1/(α + 1))/(α + 1)

Therefore we have

tn =

∫ 1

0
(1− x)αfn(x)dx∫ 1

0
fn(x)dx

=
B(n, 1)

B(n, 1/(α + 1))

∼ Γ(1)n−1

Γ(1/(α + 1))n−1/(α+1)

∼ Γ

(
1

α + 1

)−1
n−

α
α+1

(S48)

and

1− xn =

∫ 1

0
{(1− x)[1− (1− x)α)] + (1− x)α/2}fn(x)dx∫ 1

0
fn(x)dx

=
B(n, 2/(α + 1))−B(n, 1 + 1/(α + 1)) +B(n, 1)/2

B(n, 1/(α + 1))

∼ Γ(2/(α + 1))n−2/(α+1) − Γ(1 + 1/(α + 1))n−1−1/(α+1) + Γ(1)n−1/2

Γ(1/(α + 1))n−1/(α+1)

∼ Γ

(
1 + min{α, 1}

α + 1

)
Γ

(
1

α + 1

)−1
n−

min{α,1}
α+1

(S49)

Therefore, both efficiency and quality scales with n, following γ = 1 − 1/(α + 1) and η =

min{γ, 1− γ}.
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S3.4 Solving the general model

We note that the previous two cases are tractable because either xn or x∗n can be formulated into a

simple Markov process without higher-order dependencies. However, such techniques cannot be

applied directly solving the general cases. As we next discuss, using renewal process theories37

can help us obtain estimations of scaling exponents. More specifically, we first note that

|{n1 ≤ n ≤ n2 : xn = x∗m}| ≤ n2 − n1 + 1 (S50)

|{n1 ≤ n ≤ n2 : xn = x∗m}| ≥
[(n2−n1)/k]−1∑

i=0

k−1∑
j=0

I(xn1+ki+j = x∗n1+ki+i
) ≥ [(n2 − n1)/k] (S51)

Hence to calculate the length of a sequence, we only need to estimate the number of versions that

are once baseline versions (i.e. n such that xn = x∗m for some n+ 1 ≤ m ≤ n+ k).

Denote zm = 1 − x∗n as all such baseline scores. We now calculate for a specific zm to be

taken by a new one, the number of attempts it takes. Indeed, given a score zm and assuming that it

has been reused as zm = zm−1, we have

zm+1 =



zm w.p. [1−zkαm (1−zm)k](1−zαm)
1−zαm(1−zm)

∼ O(1)

U [0, zm] w.p. [1−zkαm (1−zm)k]zα+1
m

1−zαm(1−zm)
∼ O(zα+1

m )

min{U1[0, 1], · · · , Uk[0, 1]} w.p. zkαm (1− zm)k ∼ O(zkαm )

(S52)

Here we use the big-O notation to find the asymptotic case for zm → 0. This equation shows two

important insights:

(1) If we calculate the number of iterations that zm gets reused, it should be in the order of

O(z
−min{kα,α+1}
m ), leading to two cases that will be discussed in detail.
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(2) There exist two different ways for the substitution of baseline versions: Quality (w.p. O(zkα))

and Recency (w.p. O(zα+1)). For kα < α + 1, the recency mechanism dominates for small z, i.e.

produces a worse succeeding score. Hence, it keeps a stable score distribution of new baseline

scores as n increases. However, once kα > α + 1, quality mechanism takes over for small z,

characterizing a continuous path of improvement.

Here, we first derive our results for the regime kα < α + 1, and then extend the obtained

results to the other regime.

S3.4.1 Case 1: kα < α + 1

When zm+1 6= zm, our previous results show that with high probability, zm is the extreme value

among k i.i.d. random variables on U [0, 1], hence the pdf of zm, f(zm) ∼ const as zm → 0. Below

we offer a more rigorous proof: Take all the different zm as z̃ and consider a limiting distribution

of f(z̃). We have

f(z̃) ∼
∫ 1

0

f(z̃′)O(1)dz̃′ +

∫ 1

z̃

f(z̃′)O(z̃′α+1−kα)/z̃′dz̃′ (S53)

Assuming f(z̃) ∼ z̃β1 and consider z̃ → 0 one gets

β1 = min{0, 1, β1 + α + 1− kα} = min{0, β1 + α + 1− kα} (S54)

Since kα < α + 1, we get β1 = 0. Hence, as we generate a new baseline score satisfying

zm 6= zm−1, we approximate the number of iterations it will be retained as u ∼ z−kα. Let zm =

zm+1 = · · · = zm+u. For zm+u+1 we take a new random variable from a fixed distribution on [0, 1]
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whose probability density does not diverge near 0. If we consider the change of baseline scores as

a ‘jump’ and number of iterations of repeated reuse as the length of this jump (u), we eventually

arrive at a Levy flight82.

We can define ui ≡ z−kαi , following asymptotically power law pdf P (u) ∼ u−1/kα−1 ≡

u−µ−1, and m(N) ≡ minm{u1 + · · ·um ≥ N}. Next we solve 〈uλm(N)〉 for some λ. We first

calculate P (um(N)), which equals to

P (um(N) = u) = P (u)

∫ N

max{N−u,0}

∞∑
k=0

Pk(v)dv

= P (u)

∫ N

max{N−u,0}
G(v)dv

(S55)

where Pk(v) ≡ P (v1 + · · · + vk = v) and G(v) ≡
∑∞

k=0 Pk(v). Pk can be obtained analytically

by induction, following

Pk =


Pk−1 ◦ P, k ≤ 1

δ(0), k = 0

(S56)

Hence we have

G =
∞∑
k=0

Pk = G ◦ P + δ(0) (S57)

Taking the Laplace transformation we obtain

G̃ = G̃P̃ + 1 (S58)

leading to

G̃ =
1

1− P̃
(S59)
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The quantity of interest, M(N) ≡ 〈uλm(N)〉, can be formulated as

M(N) =

∫ ∞
0

P (um(N) = u)uλ

=

∫ N

0

P (u)uλ
∫ N

N−u
G(v)dvdu+

∫ ∞
N

P (u)uλ
∫ N

0

G(v)dvdu

=

∫ N

0

Q(u)[H(N)−H(N − u)]du+

∫ ∞
N

Q(u)H(N)du

= H(N)

∫ ∞
0

Q(u)du−
∫ N

0

Q(u)H(N − u)du

= H(N)

∫ ∞
0

Q(u)du− (Q ◦H)(N)

(S60)

where H(N) =
∫ N
0
G(v)dv and Q(u) = uλP (u). Performing again the Laplace transformation,

we obtain

M̃ = H̃(

∫ ∞
0

Q(u)du− Q̃)

= G̃(

∫ ∞
0

Q(u)du− Q̃)/s

=

∫∞
0
Q(u)du− Q̃
s(1− P̃ )

(S61)

Assuming

P (x) = µx−µ−1I(x ≥ 1) (S62)

we obtain

P̃ (s) = µsµΓ(−µ, s) (S63)

Q̃(s) = µsµ−λΓ(λ− µ, s) (S64)∫ ∞
0

Q(u)du =
µ

µ− λ
(S65)

where Γ(a, s) =
∫∞
s
ta−1e−tdt is the upper incomplete Gamma function. Inserting these results
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into the previous function we arrive at

M̃ =
µ/(µ− λ)− µsµ−λΓ(λ− µ, s)

s[1− µsµΓ(−µ, s)]
(S66)

To obtain asymptotic results for M(N) as N → ∞, we approximate M̃(s) as s → 0+. Here we

use the following expansion

Γ(a, s) = Γ(a)− sa

a
+

sa+1

a+ 1
+O(sa+2) (S67)

The previous equation hence writes

M̃ ≈ µ/(µ− λ)− µsµ−λΓ(λ− µ) + µsµ−λsλ−µ/(λ− µ)− µsµ−λsλ−µ+1/(λ− µ+ 1)

s[1− µsµΓ(−µ) + µsµs−µ/(−µ)− µsµs−µ+1/(1− µ)]

=
−µsµ−λΓ(λ− µ)− µs/(λ− µ+ 1)

s[−µsµΓ(−µ)− µsµs−µ+1/(1− µ)]

=
sµ−λΓ(λ− µ) + s/(λ− µ+ 1)

s[sµΓ(−µ) + s/(1− µ)]
∼ smin{µ−λ,1}−min{µ,1}−1

(S68)

Hence we obtain

M = L−1(M̃) ∼ n−min{µ−λ,1}+min{µ,1} (S69)

Let us consider the two specific cases:

Case 1: λ = −1/k, we have M ∼ nmin{1/(kα),1}−1, hence

〈(1− x∗)α〉 ≈M =


const., kα ≤ 1

n−1+1/(kα), kα > 1

(S70)

Case 2: λ = −1/(kα), we have M ∼ nmin{1/(kα),1}−min{2/(kα),1}, hence

〈1− x∗〉 ≈M =



const., kα ≤ 1

n−1+1/(kα), 1 < kα ≤ 2

n−1/(kα), kα > 2

(S71)
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This eventually leads to

〈1−x〉 = 〈z〉 = 〈z∗+z∗α/2−z∗(α+1)〉 ≈ 〈z∗+z∗α/2〉 ∼ n−min{1,kα−1}/kα ∼ n−min{γ,1−γ} (S72)

S3.4.2 Case 2: kα > α + 1

As we discussed, in this regime the quality dynamics is dominated by the second mechanism,

which does not depend on k, and asymptotically follows the same mechanism as learning from all

failures model (k = ∞). Indeed, if we expand our solution and take k → (1 + 1/α)−, we obtain

γ = 1− 1/(kα)→ α/(α+ 1) and η = min{γ, 1− γ} → min{1, α}/(α+ 1), which are the same

as k =∞. Hence, the regime lying between k = 1+1/α and k =∞ should have the same scaling

behaviors.

Taken together, we obtain

γ =



0, k < k∗

1− k∗/k, k∗ ≤ k < k∗ + 1

1/(k∗ + 1), k ≥ k∗ + 1

(S73)

η = min{γ, 1− γ} (S74)

where k∗ = 1/α.
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S3.5 Connections with canonical ensembles

The piecewise function in our solutions raises an interesting question: What characterizes the

discontinuous pattern at k = k∗ and k = k∗ + 1? In this section, we establish a mapping between

our model and a canonical ensemble system, showing that the observed critical points can be

phenomenologically linked to phase transitions (Extended Data Fig. 1).

For simplicity, we rescale this system through

K = k − k∗

Γ = k∗γ/(1− γ)

(S75)

obtaining

Γ =



Γa(K) ≡ 0, K < 0

Γb(K) ≡ K, 0 ≤ K < 1

Γc(K) ≡ 1, K ≥ 1

(S76)

Note that all smoothness conditions are preserved since the transformations in S75 are infinitely

differentiable. Here we consider a system with three different states a, b, c with corresponding

energy density Ea(h), Eb(h), Ec(h). Its partition function can be written as

Z = e−NEa(h) + e−NEb(h) + e−NEc(h) (S77)

where N is the total number of particles and h is external field. We further assume that Ea(h) =

(2εh − 1)2, Eb(h) = (2h − 1)2, and Ec(h) = [2ε(1 − h) − 1]2 where ε → 0+. The introduction

of ε is to distinguish state a from state c, and we approximate this with limiting condition Ea(h) =

Ec(h) = 1.
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Next, we map f → (2Γ− 1)2, N → lnn, h → K, and Ei(h) = [2Γi(K)− 1]2. Hence, the

two transition points k∗ and k∗+ 1 corresponds to h = 0 and 1 in the canonical ensemble systems.

To explore the nature of discontinuity at k∗ and k∗+1, we now turn back to the analytical solutions

of the mapped system.

As N → ∞, the free energy density f = lnZ/N converges to the minimal energy f =

min(Ea(h), Eb(h), Ec(h)). Hence, the magnetization density m = df
dh

is discontinuous at the

boundary of two Ei(h). In particular, the differences across the boundary is caused by changes in

base states, i.e. the mechanisms that dominate the current system. Therefore, there exists phase

transitions at h∗ if Ei(h∗) = Ej(h
∗) for i 6= j. Indeed, we obtain phase transition at h∗ = 0 and

h∗ = 1, respectively, which correspond to the two transition points at k∗ and k∗ + 1 in our model.

To unveil the origin of these transitions, here we inspect u(z), defined as the number of

attempts where a version of high score x → 1 (i.e. potential z ≡ 1 − x → 0) is retained. We can

analytically derive its asymptotic distribution as

Pz(u) ∼
{

(1− z1/k∗)[1− zk/k∗(1− z)k]

1− z1/k∗(1− z)

}−Au
∼ [1− zmin{k/k∗,1/k∗+1}]−Au (S78)

where A is a constant independent of z and u. Eq (5) enables us to calculate the expected life

span of a high-quality version 〈u(z)〉 ∼ 〈z−min{k/k∗,1/k∗+1}〉. The first critical point k = k∗

hence corresponds to the finiteness of this first moment 〈u〉. When k is small (k < k∗), 〈u〉 is

finite. In this region, although new versions build on past k attempts, good versions will only be

reused for a limited number of attempts. This is similar to an asymmetric (super-)diffusive random

walk where the step size has finite expectation (renewal process), predicting a linear relationship
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between number of attempts and time cost. Once k passes the critical threshold k∗, we find 〈u〉 =

∞, hence a good version may be retained for an unlimited long period. This is similar to a ballistic

random walk where the expectation of step size is infinite, and the scaling behavior between steps

(time cost) and distance (number of attempts) begins to emerge. The second phase transition

originates from the competition between two dynamical forces: (a) the k/k∗ term represents the

chance that the current best version gets forgotten due to k consecutive attempts in creating new

versions; (b) the 1/k∗ + 1 term captures the chance that the current best version is substituted by a

better one. Comparing the dominance of the two mechanisms points to the second transition point

k∗ + 1, beyond which k plays no major role.

S3.6 Functional forms of ρ(x) and p(x)

Two important quantities in our model are ρ(x), the score distribution for a new version, and p(x),

the probability to create a new version given reference score x. For simplicity we assume ρ(x) ≡ 1

and p(x) = (1 − x)α in the main text. Here we show that similar results can be obtained as we

consider a general class of functional forms of ρ(x) and p(x).

Indeed, since both quantities depend on the scoring system, we may fix one to a specific

form. Consider two score systems x and y that can be derived through y = c(x). We can derive

the transformations as

ρX(x) = ρY (c(x))c′(x) (S79)

pX(x) = pY (c(x)) (S80)
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Combining the two equations we find the quantities can be connected through

ρX/(p
−1
Y ◦ pX)′ = ρY ◦ p−1Y ◦ pX (S81)

Indeed, selecting appropriate transformations one can apply the derived protocols for other

existing models in learning curve studies. To demonstrate this, let us consider a selection model

documented in43. Here we define ρX = xβ−1, ρY = 1, pX = 1, we obtain c(x) = xβ/β and pY = 1

(i.e. α = 0), assuming k =∞ we have

〈xn〉 ∼ 〈y∗(1/β)n |k =∞, α = 0〉 ∼ n−1/β (S82)

In this way we arrive at a system y that is mathematically equivalent to existing model systems43,

where one has power law cost distribution, try new versions at every attempt and learns from all

past experiences. Hence our approach is also able to recover this n−1/β scalings (n−1/k using

notations in original paper43) documented in learning curve models through mathematical trans-

formations. For following discussions we always assume ρ ≡ 1 and consider different forms of

p(x).

Our previous results have shown solutions for p(x) = (1 − x)α, prompting us to consider a

more general form using expansion

ln(p(x∗)− p(1)) = α ln(1− x∗) + o(ln(1− x∗)), x→ 1 (S83)

where α ≡ limx∗→1
ln p(x∗)
ln(1−x∗) ≥ 0 captures the asymptomatic behavior of p near x∗ → 1. If

p(1) > 0, there is certain positive probability that one will create a new one, no matter how good
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she did, which will cause both tn and xn converging to positive limit. On the other hand, when

p(1) = 0, we can approximate p(x∗) ∼ (1 − x∗)α, hence we should observe the same scaling as

p(x∗) ∼ (1 − x∗)α. Indeed, all our previous derivations only rely on the power law tail of x−kα

rather than a precise power law form.

Despite its simplicity, the assumption enables us to work with a broad range of functions,

including all functions that are analytic at x∗ = 1 (e.g. p = ec(1−x
∗) − 1 ∼ c(1 − x∗)) as well

as many that are not (e.g. p = (1 − x∗)c with non-integer c) through a single parameter α. Note

that this relaxation in the functional form of p(x) is again closely related to the relaxation in ρ(x)

documented in43 due to the relationship between the two quantities we discussed before.

S3.7 Null models

Our model demonstrates that both experience and evaluations play an important role in dynamics

of failure. To verify that both ingredients are necessary, we investigate two variants of the model.

To understand the role of experience, we explore a model (a) assuming that an individual

does not reuse past versions. We find model (a) reduces to the case of k = 0, where each attempt

is made independently. Again, we recover results from S3.2, predicting constant efficiency tn = 1

and quality xn = 0.5.

We then keep the experience mechanism, but eliminate the role of evaluations by assuming

that one chooses to reuse past version regardless of its score. In other words, model (b) assumes
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that the probability to create a new version, p, is constant, independent of past scores. This allows

us to write the master equation as

x∗n+1 ∼


U [0, 1], w.p. p

δ(x∗n), w.p. 1− p

(S84)

By induction one has xn ∼ U [0, 1] for any n, again predicting constant efficiency tn = p and

quality xn = 0.5. This indicates that in the absence of evaluations the model fails to reproduce

the observed scaling behavior. Indeed, the improvement in the original model is mainly driven by

reuse preference towards version with higher-scores, explaining why it does not exist in this null

model.

Together, the predictions of these two alternative models indicate that a combination of the

two ingredients is essential for the emergence of scaling observed in Fig. 3. One may also hypoth-

esize that the uncovered patterns are affected if we define the finite capacity using the unit of time

(t) rather than trials (n), prompting us to consider a model (c): Here we assume that individuals

at time t consider all past failures that occurred during a time window τ , i.e. individuals at time

t consider all past failures that occurred during a time interval (t − τ, t], where the window size

τ , instead of our previous parameter k, measures how long one looks back upon past failures. We

further assume that the number of components equals to one for simplicity. The previous master

equation can be written as

x∗n = max
tm+···+tn≤τ

{xm} (S85)

41



xn ∼


U [0, 1], w.p. (1− x∗n)α

δ(x∗n), w.p. 1− (1− x∗n)α

(S86)

To solve this model, we note that the following equations hold.

|{n1 ≤ n ≤ n2 : xn = x∗m}| ≤ n2 − n1 + 1 (S87)

|{n1 ≤ n ≤ n2 : xn = x∗m}| ≥
[(n2−n1)/(τ+1)]−1∑

i=0

τ∑
j=0

I(xn1+(τ+1)i+j = x∗n1+(τ+1)i+i) ≥ [(n2−n1)/(τ+1)]

(S88)

This is because, if we consider τ + 1 versions (xi, · · · , xi+τ ), we should find (1) at least two of the

versions are the same or (2) these are τ + 1 different versions. If (1) is true, i.e. xj = xk for some

i ≤ j < k ≤ i + τ , we have xj = x∗k, i.e. the duplicated version is a baseline version. Otherwise,

(2) means that there are at least τ new versions, covering all versions over the last τ time units.

Hence we have x∗i+τ+1 ∈ {xi, · · · , xi+τ}.

Using the notations in previous derivations, we can also recover the master equation as

zm+1 =



zm w.p. [1−zταm (1−zm)τ ](1−zαm)
1−zαm(1−zm)

∼ O(1)

U [0, zm] w.p. [1−zταm (1−zm)τ ]zα+1
m

1−zαm(1−zm)
∼ O(zα+1

m )

min{U1[0, 1], · · · , Uτ [0, 1]} w.p. zταm (1− zm)τ ∼ O(zταm )

(S89)

To this end, we find that this variant of the model is asymptotically similar to our original

model, with τ ∗ = k∗ = 1/α. Indeed, when a baseline version is out of date and gets replaced, the

recency mechanism happens after k∗ (τ ∗) new versions have been created without reuse, explaining
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why τ ∗, the critical number of different versions to look back, equals to k∗, the critical number of

versions to look back.

S3.8 Failure streak length

To understand the fat-tailed distribution documented in Fig. 1, let us consider a single-component

case of our model for simplicity. We assume that q, the probability for a new version to success, is

independent of its score. We denote N as the number of failures before success.

Assume N ≥ n, i.e. one has not achieved success in the first n attempts. For one to succeed

in the (n + 1)-th attempt, she needs to (1) create a new version at this time, corresponding to

probability tn ∼ n−γ and (2) succeed for this new version, which has probability q. Together we

obtain

P (N = n|N ≥ n) ∼ qn−γ (S90)

Note that this form is closely related with Lindy’s law83, 84. Here the right hand side of the equation

is decreasing, since a long failure streak indicates the existence of an (unsuccessful) version that

has been used for a long period. Therefore, the same version is more likely reused again in the

future, reducing the chance to create a new, successful version at the next step.

If we define the survival function S(n) = P (N ≥ n), this equation is equivalent to

1− S(n+ 1)/S(n) ∼ qn−γ (S91)
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Using a continuous approximation we obtain

−dS
S
∼ qn−γdn (S92)

leading to the solution

P (N ≥ n) = S(n) ∼ e−cn
1−γ

(S93)

Hence, it predicts that the length distribution follows the well-known Weibull distribution.

To further understand the Weibull form, here we recognize that it is closely related to Heaps’

law74 caused by the reuse mechanism. Indeed, given that one needs to create M different versions

before success, the distribution can be formulated as an exponential model

P (M ≥ m) = (1− q)m (S94)

However, repeated reuse leads to a sub-linear scaling between N and M , following the Heaps’ law

with exponent 1− γ:

M(N) =
N∑
n=1

tn ∼
N∑
n=1

n−γ ∼ N1−γ (S95)

Combining the two equations one can obtain the same Weibull model

P (N ≥ n) = S(n) ∼ e−cn
1−γ

(S96)

We can further relax our assumption by considering success probability q as a function of

evaluation score x. As long as (i) q(x) is non-decreasing with x, hence a better score corresponds

to a higher probability of success, and (ii) q(x) < 1 for all x, we have

P (M ≥ m) =

(
1−

∫ 1

0

q(x)dx

)m
(S97)
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Using the sub-linear scaling between M and N , the failure streak length is found to be again

captured by the Weibull distribution. An interesting insight from these results is that all quantities

of interest exhibit scale-free properties. This means if we consider different criteria of success that

are organized into hierarchal structures, our results are robust against the selection of criterion.

One assumption in this analysis is that eventual success comes from creation of new ver-

sions rather than simple reuse. Hence it also predicts that the last inter-event time (time between

penultimate failure and eventual success) has a lower bound and in empirical settings may appear

longer than expected , especially for domains with higher learning rate. This is consistent with our

observations on D3, where the penultimate inter-event time could be higher than previous ones.

This selection issue can be resolved by calculating Tn = tn/t1 for all samples with at least n data

points, as we did in Fig. 3.

Another possibility that can lead to fat-tailed distributions is fitness heterogeneity17. Indeed,

since different individuals may have different fitness, it might be possible that the fat tail of failure

streaks can emerge without the reuse mechanism. To test if this is sufficient for modeling dynamics

of failure, here we compare it with other observations, finding the fitness hypothesis cannot account

for the observed patterns for a series of reasons:

1. Initial performance fails to predict eventual outcome. One direct prediction of the fitness

hypothesis is the predictive power of initial performance for the eventual outcome. However,

as shown in Figs. 4g-i, we find that for large n, the success and unsuccessful group show no
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statistical differences at the first attempt, which is in strong contrast with our prediction.

2. Weak correlation between initial performance and failure streak. Assuming performance

dynamics is mostly driven by fitness heterogeneity, those who succeeded with fewer failures

should show better performance at the very beginning. Hence, one would expect a strong

correlation between initial performance and failure streak. However, we find that across the

three datasets, the correlation between the two is weak (Extended Data Fig. 10).

3. Fat tail remains as we control fitness. If the fat-tail is caused by a broad distribution of fitness,

we should observe a narrower tail as we control the fitness through conditioning on initial

performance. Our results show that, as we conditional on samples with top/bottom perfor-

mance at the beginning, P (N) still distinguishes from the exponential model (Extended Data

Fig. 10).

4. Failure dynamics. Most importantly, the fitness hypothesis states that success and unsuc-

cessful groups lie on a continuous spectrum, hence we should not expect fundamental dif-

ferences in their temporal patterns. To this end, it fails to account for the observed patterns

documented in Figs. 3d-f.

S4 Generalized models

The one-parameter k-model discussed above offers a simple framework to quantify the complex

dynamics underlying failures. It can be generalized into richer frameworks by taking into account

more realistic assumptions. Here we present two variants of the model. While the key predic-
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tions of our original model (i.e. the stagnation and progression regimes) remains intact, the new

frameworks add more flexibility to the model, exhibiting richer mathematical properties.

S4.1 k − α model

The original model has one parameter k, measuring how memory length affects failure dynamics.

Yet agents may differ in the judgment of their own work or incentives to change given feedback.

Here we consider p = 1− (1−x∗)α, where α quantifies probability to create a new version p given

score x (Extended Data Fig. 2). Indeed, α = 0 indicates that no matter what evaluation one gets,

the agent will always create a new version (thrash around with new versions). On the other hand,

α→∞ points to the other extreme where one does not create a new version unless it is extremely

bad.

To explore the role that α plays, let us revisit the analytical results and substitute k∗ back

with 1/α, obtaining solutions to this two-parameter model

γ =



0, k < 1/α

1− k∗/k = 1− 1/(kα), 1/α ≤ k < 1/α + 1

α/(α + 1), k ≥ 1/α + 1

(S98)

We discover a two-dimensional phase diagram with three different phases (Extended Data

Fig. 2b). The boundaries separating different phases are kα = 1 and (k − 1)α = 1, respectively.

This means, if we fix α, the two boundaries reduce back to the two critical points k∗ and k∗ + 1
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(α = 1/k∗), consistent with all our findings for the previous k-model. On the other hand, if we

fix k and vary α, there always exists a critical point that separates the stagnation and progression

regimes at α = 1/k. This result predicts that agents who base their decisions more carefully on

feedback evaluations (higher α) can have a higher scaling exponent γ even holding k constant,

allowing us to incorporate alternative explanations into a more general modeling framework.

We can also find the location of the second critical point by solving the condition kα = α+1,

obtaining α = 1/(k − 1). This point is well-defined only if k > 1, which is consistent with

predictions from the previous k model (second critical point at k∗ + 1 > 1). This suggests that

for agents who only learn from last failure (k = 1), although the scaling exponent γ(1, α) =

max(0, 1 − 1/α) can be relatively high by selecting a high α, this strategy cannot enter the third

regime. Hence it is always sub-optimal as we compare it with γ(∞, α) = 1− 1/(α + 1).

Our model further offers a quantitative approach to understand the interplay between learning

and incentive (i.e. parameters k and α) – the preference to borrow from prior attempts and sensitiv-

ity to ongoing feedback (Extended Data Fig. 2b). Given that both k and α are important factors that

could affect outcomes, the phase diagram presented here allows us to quantify their joint effect.

Here we find that, the two parameters jointly define an ‘effective’ K ≡ k − k∗ = k − 1/α (S75).

The critical boundaries reduce into two simple equations: K = 0 and K = 1. According to (S76),

the scaling relationship collapses into a simple equation: Γ = min{max{0,Γ}, 1}. As we inspect

this effective parameter more, we find that those who have higher α have a larger effective K.

In the previous k model, the scaling exponent γ is upper bounded by γ(k) ≤ γ(∞) =
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α/(α+1). Canonical studies on learning have reported varying scaling exponents ranging between

0 and 122. These two results are reconciled following the introduction of α, the incentive parameter.

Indeed, as α takes different values, going from 0 to∞, all possible values that γ can take are exactly

captured within the interval [0, 1]. This further makes an important prediction for future studies to

test: although the co-emergence of stagnation and progression regimes can happen for agents with

different incentive levels, those with higher incentive for success may be identified by a higher

upper bound for their learning rate. This opens up a new avenue to diagnose the productive and

pathological implications of incentives for successful productivity.

S4.2 k − α− δ model

The original model also assumes that one has perfect inference of past feedback and always selects

the best among last k versions as the baseline. Yet individuals or organizations may not always

chhose the best version, motivating us to frame the selection of baseline versions in a probabilistic

fashion for k > 0, i.e.

P (i) =
f(xi)1n−k≤i≤n−1∑n−1

j=n−k f(xj)
(S99)

where f is a function that maps real quality of a version to an individual’s inference of its quality.

One common way to formulate f in a model like this is by assuming f(x) = (1−x)−δ with δ ≥ 0.

In this formulation, δ = 0 means one cannot differentiate quality between past versions and selects

randomly among different versions. By contrast, δ → ∞ means one always chooses the prior

version with the highest quality, converging back to the case we considered in the k − α model.

To this end, the δ parameter generalizes our previous model to situations where one has imperfect
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recognition of quality.

This generalization leads to a more practical interpretation of the model, yet at the same time

poses a technical challenge to solve the model. Indeed, the baseline version under this model may

not be a high-quality one. Rather, it is now possible that one repeatedly reuses low-quality versions,

even though better ones are also available. This means we have to develop a new theoretical

strategy to solve this model. Here we track the duration of a specific version with score x ≡

1 − z(z → 0) and calculate the score composition of the most recent k versions. We observe the

state once every k versions, i.e., if we count the state based on versions (xn−k, · · · , xn−1), next

time we count the state based on versions (xn, · · · , xn+k−1). Here we introduce a new notation for

different versions:

1. ◦ representing there is at least one version with the same score (x) in recent k versions.

2. ↑ representing there is at least one version with a higher score (> x) in recent k versions.

3. ↓ representing there is at least one version with a lower score (< x) in recent k versions.

There are in total 7 states as we inspect the composition of k consecutive versions: [◦], [↓ ◦],

[◦ ↑], [↓ ◦ ↑], [↓], [↑], and [↓↑]. We are mostly interested in the system state where ◦ is no longer

available, which prompts us to consider the last three states as absorbing states. We next calculate

the leading factor for state transition probabilities between the transient states.
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1. If we start from [◦]:

P ([◦]→ [◦]) = O(1− zα)k ≈ 1

P ([◦]→ [↓ ◦]) ∼ zα(1− z)O(1) ∼ O(zα)

P ([◦]→ [◦ ↑]) ∼ zαzO(1) ∼ O(zα+1)

To calculate P ([◦]→ [↓ ◦ ↑]), we recognize that the key of this transition is to create at least

two different new versions, with at least one of which being a higher-quality version. Starting

from [◦], the probability of creating a new version is zα. We can calculate the probability of

creating the second new version, which can be approximated as

∫ 1

0

yα−δ + zα−δ

y−δ + z−δ
dy =

∫ 1

0

zα−δ

y−δ + z−δ
dy +

∫ 1

0

yα−δ

y−δ + z−δ
dy

The first term on the right-hand side (RHS) estimates the probability of creating a new ver-

sion when the original version is used as the baseline, which can be estimated by

∫ 1

0

zα−δ

y−δ + z−δ
dy = zα+1

∫ 1/z

0

uδ

uδ + 1
du ∼ zα+1

[∫ 1

0

uδdu+

∫ 1/z

1

1du

]
∼ zα

The second term on the RHS estimates the probability of creating a new version when the

first new version is used as the baseline, which can be estimated by

∫ 1

0

yα−δ

y−δ + z−δ
dy = zα+1

∫ 1/z

0

uα

uδ + 1
du ∼ zα+1

[∫ 1

0

uαdu+

∫ 1/z

1

uα−δdu

]
∼ zmin{α+1,δ}

Given the new versions, the probability for at least one of them having a score higher than x

is z, helping us calculate the state transition probability:

P ([◦]→ [↓ ◦ ↑]) ∼ O(zα)O(zα + zmin{α+1,δ})zO(1) ∼ O(zmin{α,δ}+α+1)
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2. If we start from [↓ ◦]: Going to [◦] means one need to repeatedly reuse the original version

for k times, each time happening with probability∫ 1

0

z−δ(1− zα)

y−δ + z−δ
dy ∼ z

∫ 1/z

0

uδ

uδ + 1
du = 1− z

∫ 1/z

0

1

uδ + 1
du ≈ 1

Together we have

P ([↓ ◦]→ [◦]) ≈ 1

Approaching [↓ ◦] mostly needs a ↓ version, which is with probability

P ([↓ ◦]→ [↓ ◦]) ∼ O(1)O(zmin{α,δ} + zmin{1,δ}) ∼ O(zmin{α,δ,1})

To arrive at [◦ ↑] we need to create a new version and make sure it has high quality, i.e.

P ([↓ ◦]→ [◦ ↑]) ∼ zO(zmin{α,δ}) ∼ O(zmin{α,δ}+1)

Combining these two conditions we can also derive

P ([↓ ◦]→ [↓ ◦ ↑]) ∼ O(zmin{α,δ,1}+min{α,δ}+1)

3. If we start from [◦ ↑]: Note that the probability to choose between ◦ or ↑ versions when

both are available can be approximated by non-zero constant. This is because the score of

a ↑ version can be well approximated by [x, 1], hence the score of ◦ and ↑ are comparable.

Using this fact and results from case 1 we have

P ([◦ ↑]→ [◦]) ∼ O(1)

The probability is approaching a non-zero constant, but it is strictly smaller than 1, since we

also have

P ([◦ ↑]→ [◦ ↑]) ∼ O(1)
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If one creates a version that is ↓, we have

P ([◦ ↑]→ [↓ ◦]) ∼ O(zα)

P ([◦ ↑]→ [↓ ◦ ↑]) ∼ O(zα)

4. If we start from [↓ ◦ ↑], derivations of transition probabilities are similar to case 2, following

P ([↓ ◦ ↑]→ [◦]) ∼ O(1)

P ([↓ ◦ ↑]→ [↓ ◦]) ∼ O(zmin{α,δ,1})

The only difference is that we do not need to create new versions to obtain ↑. To the contrary,

there are existing ↑ to be reused, leading to

P ([↓ ◦ ↑]→ [◦ ↑]) ∼ O(1)

P ([↓ ◦ ↑]→ [↓ ◦ ↑]) ∼ O(zmin{α,δ,1})

P ([↓ ◦ ↑]→ [↓ ◦ ↑]) ∼ O(zα)
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[◦] [↓ ◦] [◦ ↑] [↓ ◦ ↑]

[◦] 0 0 0∗ 0∗

[↓ ◦] α min{α, δ, 1} α min{α, δ, 1}

[◦ ↑] α + 1 min{α, δ}+ 1 0∗ 0∗

[↓ ◦ ↑] min{α, δ}+ α + 1 min{α, δ, 1}+ min{α, δ}+ 1 α min{α, δ, 1}

Table S1: Scaling behavior of the model with δ parameter. We calculate the approximate

state transition matrix for the score composition of recent k versions. ◦: a same-score

version, ↑: a higher-score version, ↓: a lower-score version. Numbers are exponents of

the probability limz→0
lnP (1−z,s′→s)

ln z
, with 0 denoting P → 1 and 0∗ denoting P → c for some

c ∈ (0, 1).
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What is the limiting distribution of these four states conditional on the system has not been

absorbed? To solve this we again represent scaling forms as the leading factor, i.e. for a state s,

one has P(s) ∼ zβs . Recognizing that P (s) =
∑

s′ P (s′)P (s′ → s) and
∑

s P (s) = 1, we can

solve the equations 
βs = mins′{βs′ + limz→0

lnP (s′→s)
ln z

}

mins βs = 0

(S100)

Substituting our previous results into the equation we need to solve

β[↓◦] = min{β[◦] + α, β[◦↑] + α, β[↓◦↑] + min(α, δ, 1)}

β[◦↑] = min{β[◦] + α + 1, β[↓◦] + min(α, δ) + 1, β[↓◦↑]}

β[↓◦↑] = min{β[◦] + α + min(α, δ) + 1, β[↓◦] + min(α, δ, 1) + min(α, δ) + 1, β[◦↑] + α}

min{β[◦], β[↓◦], β[◦↑], β[↓◦↑]} = 0

(S101)

The only solution to this set of equations is

(β[◦], β[↓◦], β[◦↑], β[↓◦↑]) = (0, α, α + 1,min{α, δ}+ α + 1)

This solution allows us to calculate the state after ◦ is eventually abandoned (before normalization).

We first calculate the probability for at least one better version to exist:

P ([◦]→ [↑]) ∼ O(zα)

P ([◦ ↑]→ [↑]) ∼ P ([↓ ◦ ↑]→ [↑]) ∼ O(1)

P ([↓ ◦]→ [↑]) ∼ O(zmin{α,δ}+1)
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Together we have

P ([↑]) =
∑

s∈{[◦],[↓◦],[◦↑],[↓◦↑]}

P (s)P (s→ [↑]) ∼ O(zα+1)

Next then consider P ([◦]→ [↓]), to achieve k versions other than 1−z one need to (1) create

a lower-scored version based on 1 − z (with probability zα(1 − z) ∼ zα) and (2) generate other

k − 1 versions, either by creating new ones or by reusing the ones just created. Each step in (2)

happens with probability O(zmin{1,α,δ}), allowing us to calculate the leading term as

P ([◦]→ [↓]) ∼ O(zα+(k−1)min{1,α,δ})

Similarly we have

P ([◦ ↑]→ [↓]) ∼ O(zα+(k−1)min{1,α,δ})

Calculating the remaining two probabilities are more complicated, here we take [↓ ◦] → [↓] as a

example. Indeed, we find this probability largely depends on the concrete composition. Consider

k = 3, if we start from the state (↓, ◦, ◦) then the probability is in the order of O(z3min{α,δ,1}), yet

if we start from (◦, ◦, ↓) the probability is in the order of O(z2min{α,δ,1}). To this end, we index

each state (consecutive k versions, i.e. (xn−k, · · · , xn−1)) by a state m, defined as

m = min
1≤i≤k

{xn−i = 1− z}

We find the transition probability from state i to state j follows Pi→j ∼ O(z(j−1)min{α,δ,1}), which

leads to Pi ∼ O(zα+max{i−2,0}min{α,δ,1}). Also note that Pi→[↓] ∼ O(z(k−i+1)min{α,δ,1}). Together

we have the probability that one starts from [↓ ◦] and reaches [↓] at the next step follow

k∑
i=1

PiPi→[↓] ∼
k∑
i=1

O(zα+max{i−2,0}min{α,δ,1})O(z(k−i+1)min{α,δ,1}) ∼ O(zα+(k−1)min{α,δ,1})
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We can obtain similar results for [↓ ◦ ↑]→ [↓]. Together we have

P ([↓]) ∼ z(k−1)min{α,δ,1}+α

The other possibility, P ([↑↓]) involves higher-order terms and can be therefore neglected in this

derivation.

Together, these results allow us to map an analogy between this model and the k−α-model.

Indeed, the three important indexes that determine the separation of regimes used to be 1, kα and

α+ 1. Yet here it becomes 1, (k− 1) min{α, δ, 1}+ α and α+ 1. Using a similar technique in S3

we obtain

γ =



0, k < 1/α

1− 1/[(k − 1) min{α, δ}+ α], 1/α ≤ k < 1/min{α, δ}+ 1

α/(α + 1), k ≥ 1/min{α, δ}+ 1

(S102)

Or equivalently

γ(k, α, δ) = 1− {max[min(α + (k − 1) min{α, δ}, α + 1), 1]}−1

Here we simplified min{α, δ, 1} into min{α, δ}. This is because, for 1 to be taken into consider-

ation we need (k − 1) + α < α + 1, i.e. k < 2. While for k = 1, (k − 1) min{α, δ, 1} + α =

(k − 1) min{α, δ}+ α = α.

Most interestingly, with the addition of the δ parameter, this three-parameter model is found

to induce four different phases (Extended Data Fig. 10d). Three of the regimes are generalizations

of those found in the k − α model, where the scaling exponent γ does not depend on δ, following
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γ(k, α, δ) = γ(k, α,∞) (Extended Data Fig. 10c). The fourth one, however, is a new phase

and only exists for small δ. In this regime, the inability to select a high-quality version (small

δ) dominates the scaling behavior, with exponent γ(k, α, δ) = 1 − 1
(k−1)δ+α . The phase diagram

reveals novel mathematical properties with the introduction of the δ parameter. Here we summarize

three key, novel insights offered by this model.

• The (α, δ) phase diagram shows two triple points, located at (k, 1/k, 1/k) and (k, 1/(k −

1), 1/(k − 1)) respectively (Extended Data Fig. 10d). The existence of these triple points

indicates that if we fix (k, α) or (k, δ), the four regimes cannot exist simultaneously. For

example, if we tune δ for a given pair of k and α, we can find one (if α < 1/k), two (if

α > 1), or three (if 1/k < α < 1) different regimes. The most relevant case is 1/k < α < 1,

where δ induces a transition across scaling and non-scaling regimes at δ∗ = 1−α
k−1 . Hence, in

this regime we observe a phase transition in δ. Yet outside this interval, changing δ would

not reproduce the transition between stagnation and progression regimes.

• We can further combine the three parameters and extend the effective K though K ≡ 1 −

1/α + (k − 1) min(1, δ/α). The scaling and non-scaling regimes are again separated by

K = 0, manifesting its consistency with predictions of the k-model. This formulation allows

us to understand the role each parameter plays in determining the learning rate. For example,

when one has low δ (δ < α), looking back on more failures (increasing k) can increase the

effective K. But this strategy is less effective in this case because of the low return on

effective K, i.e. the slope δ/α is smaller than 1.
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• The phase transitions induced by δ degenerate when k → ∞. Indeed, the critical points

δ are upper bounded by 1/(k − 1), which goes to 0 in the case of k → ∞. This means

that as long as one has some ability of calibration on quality (δ > 0) and a large number

of failures (large k) to consider, increasing δ alone does not help. This result lends further

support for our previous findings, showing that for a wide range of practically reasonable

regimes, we arrive at the same conclusion by only considering k and without considering δ.

This also demonstrates that while the full model at this point has three parameters, k remains

as the most fundamental parameter, which by itself can generate various scaling behaviors,

especially being the key to account for the separation of stagnation and progression regimes.

S5 Empirical measurements

S5.1 Quantifying performance dynamics

Here we leverage our three datasets and compile three different measurements for performance.

For the NIH grant application dataset, we make use of the percentile scores assigned by NIH

review panels. NIH uses a two-step peer review mechanism: Roughly half of the proposals are

selected for the second round discussion, where each proposal is given a percentile score based

on their percentile ranking among its peers. Percentile score has been widely used to measure

the quality of R01 grant applications28, 85, reflecting judgment of expert reviewers. Although re-

viewers score are necessarily imperfect, there is growing evidence for strong correlations between

percentile score and subsequent successes of the project51, 86. One disadvantage of using the per-
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centile score is that undiscussed proposals (those get rejected in the first round) do not have such

scores. Moreover, since there exist differences concerning the discussion rate, applications lying

on the boundary of discussion can have either marginal scores or no scores. Indeed, here we cal-

culate the proportion of having a percentile score around 57% and plot the score distribution. We

find as score exceeds 50, there are much fewer samples, since many proposals at this rank did not

even get discussed and assigned a score. To avoid discrimination across study sections, here we

take score below 50 and regard the remaining proposals as undiscussed. We also vary the thresh-

old to 55, finding results remain the same. Lower percentile scores indicate better performance.

To be consistent with other measures (higher the better) we rescale the percentile scores using

1-0.01×original score, so the values reported in main text are bigger the better.

To measure the performance in startup ventures, we leverage the investment amount in the

first funding round as a proxy. Although there are a series of firm-level statistics that could po-

tentially measure the quality of a venture, investment amount stands out as a preferred choice of

representing investor evaluations. This definition does not account for geographical and industrial

factors, as such information is not available to us, but it serves as a reasonable index of startup

companies potentials in achieving their eventual goals (IPO or high-value M&As).

Similar to other frequently used measures in economics, investment amount follows a fat-

tailed distribution and exhibits time-dependent properties. To address the two challenges, we take

logarithmic of the investment amount and calculate z-score within each year. Denoting the amount

of all investments made in year t as {st1, · · · , stn}, here we rescale the values into the performance
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score z through

zti =
log(sti)− E[log(st)]√

Var[log(st)]

Once rescaled, we find zti approximately follow the standard normal distribution N(0, 1) indepen-

dent from t, allowing us to directly compare attempts made in different years. We then compare

first-round investment amounts for successful and failed attempts, finding the two samples are

clearly separated.

Similarly, for terrorist attacks, one measure for performance is the number of individuals

wounded, which is reported for more than 91% of the attacks recorded in the database. To this end,

we collect wound statistics as our performance measure. Indeed, fatal (successful) attacks also

lead to a higher number of wounded individuals than others, validating the effectiveness of using

wounded statistics as performance measurements. Related studies of terrorist attacks suggest the

outcome of attacks follow a power law distribution, which is also confirmed in our dataset. To this

end, we rescale the original values by log(wounded+ 1) in our analysis.

Note that although the overall coverage of performance measures is high (94% for D2 and

91% forD3), in both datasets there are missing values. To ensure that they do not affect our results,

we also label these missing values as NA and exclude them as we analyze performance dynamics.

Analyses that do not require performance information are measured on the full data sample.

Note that while statistical tests in performance dynamics consistently show a lack of im-

provement between first and second attempts for the unsuccessful group, they do not rule out the
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possibility that this group may have decreased performance. Such performance dynamics are sup-

ported by some of our observation (Extended Data Figure. 6i, 8gi, 9jlm) and may be associated

with competitions within the system. For example, performance of NIH proposals is evaluated by

a percentile score, hence simply retaining the same performance may result in a worse score as

his/her peers improve systematically.

S5.2 Length distribution of failure streaks

The length distribution of the failure streak, defined as the number of failures before success, is

measured directly from data and fitted using maximum likelihood estimation techniques47. We

fit empirical data with discrete version of Weibull (stretched exponential) form using maximum

likelihood estimation with parameters xmin = 2 and calculate uncertainty from bootstrapping over

100 simulations, yielding β1 = 0.666±0.017, β2 = 0.566±0.086, and β3 = 0.129±0.033. Com-

paring this with γ estimated from temporal dynamics, two-sided t-tests indicate that none of the

three datasets can reject the validity of the scaling identity β + γ = 1 (P = 0.176, 0.421, 0.141).

We further compare the fitting results from alternative models, i.e. lognormal, power law, and

truncated power law using likelihood ratio test47, finding that Weibull distribution is consistently

among the best functional forms (Table S3). To quantify the uncertainty of parameter estimations,

we performed bootstrapping technique (100 times) to calculate optimal estimation for each round,

and obtained standard error of parameter estimators. We also repeated the results for xmin = 3, ob-

taining β1 = 0.592± 0.032, β2 = 0.513± 0.175, and β3 = 0.139± 0.060, which again statistically

supports β + γ = 1.
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To further test these results, we perform two randomization processes. We performed our

first randomization operation, by keeping the timing and outcome of each attempt but changing

the individual/organization associated with the attempt via random selection. The null model leads

to exponentially distributed failure streaks (Fig. 1). We then performed a second randomization

procedure by taking the samples used in Fig. 1 and shuffling the success/failure label from each at-

tempt. This operation keeps constant both the overall success rate and the total number of attempts

for each individual (Extended Data Fig. 4c-e). The two versions of randomization both lead to

exponential like distributions, showing clear deviation from data.

Note that Fig. 1h-j and 3a-c only show results for less than 21 consecutive failures prior to the

eventual outcome, accounting for 99.99%, 100%, 99.35% for the successful group and 99.99%,

100%, 99.60% for the unsuccessful group. All statistical tests are performed on the full data

(100%).

S5.3 Measuring failure dynamics

Given the highly skewed distributions of N and tn, to measure Tn = tn/t1 we first performed log

transformation to calculate the mean and variance of log(Tn) from

E[log(Tn)] = 〈log(tn/t1)〉 (S103)

Var[log(Tn)] = 〈[log(tn/t1)]
2〉 − 〈log(tn/t1)〉2 (S104)

where we take tn = max{tn, 1} when necessary. We have also checked the robustness of this

operation by trying to replace 1 with 0.5, finding the results remain similar. As the number of
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samples decreases dramatically with n, here we focus on n ≤ 10 for D1, n ≤ 7 for D2, and n ≤ 4

for D3.

The two equations immediately give us mean E[log(Tn)] and standard error of the mean√
Var[log(Tn)]/sample size, as plotted in Fig. 3. The divergence between the two groups can be

detected as early as the second attempt. Although T1 ≡ 1 by construction, Student’s t-test rejects

the hypothesis that log(T2) between success and unsuccessful groups are the same (P = 0.000457,

0.00773, and 0.0992, respectively).

To calculate the temporal scaling exponent γ, here we run linear regressions between log(n)

and log(Tn) and take the negative slope as γ, i.e.

log(tn/t1) = −γ log(n) + c, (S105)

yielding γ1 = 0.361 ± 0.010, γ2 = 0.509 ± 0.036 and γ3 = 0.640 ± 0.153 for successful group,

with P < 0.001 for all three datasets. We also performed individual fixed effect linear models

using samples with at least three data points, i.e.

log(tn,j) = −γ log(n) + cj + εn,j, (S106)

where j is the index for different samples and cj is the fixed effect term for each agent j. We obtain

similar results γ1 = 0.372± 0.017, γ2 = 0.431± 0.077 and γ3 = 0.685± 0.182. For unsuccessful

group there exists no significant relationships between log(n) and log(Tn) since the second failure

(i.e. excluding T1), with P = 0.450, P = 0.884 and P = 0.957 respectively. Together, these

results offer strong empirical support for the diverging temporal patterns predicted by our model.
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S5.4 Quantifying component dynamics

In our modeling attempts, we treat components as purely abstract properties of a grant proposal,

fledgling company, or terrorist campaign. Here we further consider if we can empirically mea-

sure or approximate components, thereby better estimating and understanding their dynamics and

validating the descriptive power of our model. The difficulty of this measurement stems from the

fact that the existing datasets obtained above, while extensive, are nevertheless inadequate in this

respect. Indeed, unlike scientific papers, which have reference information that can approximate

the units of knowledge they piece together, grant proposals are largely isolated documents, making

it difficult to infer the ‘substance’ of each proposal. Furthermore, while some metadata are associ-

ated with each proposal, such as funding institute and PI affiliation, these data are typically constant

for each individual applicant and hence useless for evaluating the dynamics of components across

different attempts by the same individual.

To tackle these challenges, we acquired a new data corpus from the NIH that contains ab-

stract information for all R01 proposals submitted after 2008 (both funded and unfunded). Since

the abstract data is only available after 2008, and the definition of the unsuccessful group requires

five years of inactivity, so there’s not enough data for us to measure the unsuccessful group. Never-

theless, the new data does offer a possibility for us to empirically measure the component dynamics

for the successful group.

Our hypothesis here is that if we can perform content analysis on abstracts, it may allow us

to measure components embedded in each new attempts. To achieve this, we applied a natural lan-
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guage processing (NLP) technique to NIH abstracts that estimated MeSH (Medical Subject Head-

ings) terms associated with each proposal. Note that MeSH terms are one of the most commonly

used classification codes for biomedical research87, and this operation is only possible thanks to

recent advances in NLP classification, allowing us to automatically and accurately infer MeSH

terms from abstract texts. Specifically, we applied NLM Medical Text Indexer, an official protocol

developed by US National Library of Medicine Indexing Initiative, to extract a list of MeSH terms

given abstract texts.

While the obtained MeSH terms are necessarily imperfect and may not directly correspond

to distinct components of the proposal, they capture information that reflects different facets of

the proposal, including methods and experimental techniques (e.g., genomic screens), objects of

analysis (e.g., breast cancer), research design (e.g., genome-wide association study), and physical

phenomena (e.g., estradiol). Here we approximate the creation of new versions by the number of

new MeSH terms (terms that did not appear in the previous k submissions), defined as mn. For

example, to measure the dynamics under k = 1, we count mn as the number of Mesh terms that

appear in the n-th attempt but not in the (n − 1)-th attempt. More generally, if we define Sn as

the set of all Mesh terms associated with the n-th attempt, our definition can be formulated as

mn ≡ |Sn − (Sn−1 ∪ · · · ∪ Sn−k)|, where |A| denotes the size of a set A (Extended Data Fig. 4a).

According to our model, the time cost comes from creating new versions, traced by the

introduction of additional components. Hence, our model suggests that given k, we can use Mn ≡

〈mn〉/〈m1〉 to mimic the temporal dynamics of Tn ≡ 〈tn〉/〈t1〉. More precisely, for the successful
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group, we should expect to observe that for large k (k > k∗), Mn and Tn should be similar. Yet

for small k (k < k∗), the two quantities should be quite different. This means that in the same way

faster resubmissions (Tn) predict ultimate success, so do shrinking sets of new components (Mn).

We set out to test this new prediction by calculating Mn for different k. We find that the two

curves follow different dynamics (k ≤ 3). Yet the dynamics of Mn and Tn cannot be statistically

distinguished for k > 3 (from 4 to ∞), both following a power law with γ ∼ 0.35 (Extended

Data Fig. 4b). Both findings appear consistent with model predictions. Given that Mesh terms are

merely a rough estimate of idea combination in NIH proposals, this degree of agreement seems

unexpected.

S5.5 Learning by organizational vs. individual

One aspect of our paper is that here we study learning processes at three different levels, ranging

from individual attempts (PIs) to individuals in teams (entrepreneurs) to larger-scale organizations

(terrorist groups). The patterns we uncovered reveal that all three levels follow similar statistical

patterns governing failure dynamics. But beyond the universality, what differences should we

expect across different levels? To answer this question, we contextualize our paper in the literature

it builds upon.

The organizational learning literature has identified several factors for the emergence of

learning within organizations, with some arguing that individual learning is just one factor in how

and why organizations may learn. For example, knowledge gained from past experience can be
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embedded within both individual habits and organizational routines (including the idea of trans-

active memory)38, 88, 89. These suggest that organization-level learning, compared with individual

learning, should be characterized by higher learning rate on average. There is also evidence that

organizational learning tends to be conservative due to inflexible routines. For example, given ver-

sions with the same quality, organizations may have higher probability to reuse rather than create

a new one.

Together, these theories predict that of the three domains studied, those closer to organiza-

tional learning (such as terrorists) should correspondingly have higher learning rates than those

closer to individual learning (such as NIH PIs). We can test this hypothesis by calculating the

average learning rate for our samples. We find that our estimations appear consistent with the hy-

potheses outlined above: For NIH PIs, the average learning rate γ is around ∼ 0.361; The learning

rate for the entrepreneurship case is higher, around ∼ 0.509, and terrorist groups have the high-

est rate on average ∼ 0.640. While these differences could be due to inherent domain-specific

differences, they do show consistency with the theories from the organizational learning literature.

S5.6 Scientific achievements and learning rate

Existing literature has also highlighted a series of factors related to why one learns more than

others90, including individual ability, motivation and opportunity to learn. These factors may play

a role, manifested in the k parameter. One empirical challenge here is that it remains unclear how

to infer k directly from data. But we also realize we can relax the assumption to infer a weak
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form of the parameters by inferring γ, and correlate individual characteristics (y) with γ. Indeed,

according to our model, if y correlates with k, it may not correlate with γ (if it’s in the third phase

(k > k∗ + 1)), but if y correlates with γ, then it must correlate with k.

High achieving scientists are more visible, better recognized, and have access to more re-

sources (Matthew effect in science)91–93, suggesting that individual prior achievement may mani-

fest in a higher learning rate90. Here we test this hypothesis from our data, by collecting additional

datasets that allow us to identify individual characteristics and achievements.

Here we extend our analysis of individual characteristics by linking NIH data to the Web of

Science citation database. This procedure involved systematic effort in paper matching and author

name disambiguation. In this revision, we began from a list of NIH supported publications in

PubMed and selected those authored by the same PI. Then we use a WoS-PubMed crosswalk file

to locate these papers in WoS and treated them as ‘seed’ papers. We then expand this initial set

to other publications by the same-name author in WoS by tracing the citation relationships and

following standard name disambiguation procedures9, 94: If a paper was contributed by an author

with the same name and had citation/reference/co-reference relationships with the initial set, we

included it into the PI publication list as well. Implementing this method iteratively allowed us to

construct a comprehensive publication list for each PI in our sample.

We then calculated the learning rate γ by regression for all samples with at least three fail-

ures before eventual success (i.e., more than two inter-event time periods). Based on the learning

literature, we hypothesize that the learning rate may be related to experiences both within and
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outside the task of producing an NIH proposal38. To this end, we calculated the total number of

citations of a PI for all his/her papers published before the first failure (logged), approximating

his/her overall ‘status’ and accomplishments. We find that it is significantly, positively correlated

with the learning rate γ (P < 0.001, after controlling for the first inter-event time). We further

test this correlation by including the number of prior successes and application year as control

variables, finding that although past funding success is also correlated with higher learning rate

(P < 0.001), the relationship between citations and γ remains robust (P = 0.014). Although it

may seem intuitive that citations and grant applications are correlated, note that the samples stud-

ied here include PIs who all failed at least three times before eventually being awarded the grant

(i.e., similar success rate). In this respect, it is somewhat unexpected to observe that the speed with

which scientists learn from failures can be anticipated by measuring prior achievements. This is

consistent with the hypothesis that prior attention and success may provide scientists with greater

confidence and resources that allow them to persist and refine rather than abandon and replace the

components from an initial, failed proposal.

S5.7 Gender and learning rate

The results presented above offer support for the notion that individual characteristics can in-

deed affect learning. Here we further anchor other individual characteristics that may distinguish

learning. The literature suggests gender could be a potential robust factor that applies across do-

mains, especially in science and entrepreneurship, which are characterized by persistent gender

inequality95–99. It thus suggests that, if we can separate individuals by gender, we may detect
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differential learning rates as well.

To test this relationship in our data, we use a gender detector algorithm to infer gender in-

formation from person’s first name. We find that gender indeed plays an important role, after we

control for all other factors. Our regression analysis shows significant correlation between gender

and learning rate. All other factors being equal, the learning rate γ of a male PI in NIH system

exceeds that of a female PI by 0.14 (P = 0.001). That is, male PIs fail faster than their female col-

leagues. This difference appears substantial, considering that the average learning rate is centered

around 0.35. Note that here we do not essentialize these gender differences, and recognize that

they may flow from institutional as well as individual causes, such as a culture that discourages

women from persistence and encourages oversensitivity to feedback. Furthermore, such correla-

tions cannot fully account for the discovered signals, as a substantial amount of predictive power

by our model remains (AUC higher than 0.7) after we separate our samples by gender.

We further test this relationship on startup dataset, finding a similar gap of 0.10 in the same

direction between male and female innovators, though the result is not significant, possibly due to

a smaller sample size. These insights are consistent with existing literature on gender inequality

in science and entrepreneurship95–98. They also highlight the fact that our paper offers a new

theoretical framework to systematically study learning, failures and the factors that may influence

them.
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S6 Prediction task

S6.1 Predicting ultimate success

Our model uncovers time as an early signal for predicting eventual success and failure. This

prediction is somewhat unexpected, since individuals through failures are aimed at improving their

performance, rather than saving the time, hence we should expect the two groups have similar

temporal patterns. To test this, we use D1 to set up a simple prediction task (Extended Data

Fig. 3a). The goal of this task is not to design state-of-art classifiers for predicting success/failure.

Rather, to test the predictive power of the uncovered temporal regularity. From this respect, our

results offer a lower bound for the predictability of failure dynamics.

To this end, here we first assume a logistic classification model (Model 1) to predict the

eventual success followingN consecutive failed attempts. For eachN , we collect positive samples

as individuals succeeded after N failures versus negative samples as individuals dropped out after

the same number of consecutive failures. Each sample has a N − 1-dimensional predictor tn

(1 ≤ n ≤ N − 1). The classifier writes as

log(success)

1− log(success)
= β0 +

N−1∑
n=1

βn log(tn) (S107)

To evaluate the performance of our predictions, we calculate the AUC curve (average area under

the receiver operating characteristic) over 10-fold cross validation for different N .

Our model further predicts that the inter-event time sequence follows a power law decay, sug-

gesting that we can further simplify the prediction model. Indeed, the power-law form means that
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we can rescale the N − 1-dimensional feature (log(t1), · · · , log(tn−1)) into two simple parameters

by calculating the slope −γ and intercept θ in the log-log plot, i.e.

log(tn) = −γ log(n) + θ (S108)

Our prediction model 2 is based on the two variables γ and θ to train a simpler classifier for eventual

success, following

log(success)

1− log(success)
= β0 + β1γ + β2θ (S109)

This simplification is expected to be inaccurate since it reduces a feature with high dimensions to

data points into a 2-dimension feature. However, to our surprise, we find that a similar prediction

accuracy can be achieved as the previous model 1 across different N (Extended Data Fig. 4),

accounting for more than 95% of accuracy in terms of additional predictive power (AUC-0.5).

Model 2 also offers additional evidence that is consistent with model predictions. First, the

coefficient for γ, β1 remains positive, demonstrating that escalations in failure dynamics are related

to eventual success. Our previous results also suggest that the membership of the two groups are

mainly determined by the learning process (different k) rather than the initial advantage (score/time

at the first attempt). If so, we would expect the increasing majority of predictive power coming

from information encoded in the parameter γ, especially for individuals with large N . To test this

hypothesis, we apply an ad-hoc approach for variable importance in logistic regressions on D1.

We calculate the ratio coefficient for normalized input, i.e.

R =
|β1|[var(γ)]1/2

|β2|[var(θ)]1/2
(S110)
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R measures the ratio of coefficients once the two variables are normalized to have identical vari-

ance. We find that R increases systematically with n, suggesting that the variable γ contributes

increasingly to the predictive power as one fails more, supporting the hypothesis that the dynamic

process itself, rather than the starting point, has a xlarger impact on the eventual outcome following

failures.

S6.2 Testing power law model

Despite long history in using power law forms to model learning curves, the literature has also

suggested other functional forms50. One of the frequently used alternatives is exponential function,

predicting

tn ∼ ab−n (S111)

Indeed, recent studies have also suggested that the observed power law could be an artifact by

average different samples, and may be better characterized by an exponential decay100.

The difficulty in testing different hypotheses in our datasets comes from the small sample

sizes: in contrast to industrial production or simple individual tasks, it is hard to observe empir-

ically a large number of failures for a given individual. Hence directly comparing the fitting of

different models would suffer from overfitting issues. To this end, here for each individual sample,

we take all but the last inter-event time for model fitting, comparing model predictions for the last

inter-event time. This out-of-sample testing technique helps to alleviate the issue of overfitting.

Using this method we compare the performance of power law, exponential and linear models

74



in characterizing tn for each individual, measuring their prediction error (Extended Data Fig. 2).

We find that across the three datasets, the power law model yields the smallest error in most cases.

S7 Robustness checks

S7.1 Definition of success and failure

We vary our definition of success and failure across different datasets. For D1 we remove all

renewal/resubmission successes and only focus on new applications, finding our conclusions are

not affected by resubmissions (Extended Data Fig. 6).

For D2 we vary the definition of success for a startup. Previously we have considered IPO

and high-value M&A as success. Similar with hit papers defined in science of science, we define

high-value M&As as those with transaction value ranking top 1% among all transactions in the

same year. We vary this definition to top 5% transactions or exclude all M&As (Extended Data

Fig. 7), finding our conclusions still hold. One problem with our definition for success is that it

does not include ventures that could already be considered successful despite not having had an

IPO or being acquired. To this end, we collected a list of unicorn companies, defined as privately

held startup companies valued at over 1 billion, from CB Insights website, yielding 121 companies

in our sample, which can be linked through company names. Overall we find such cases are

relatively rare. We also test our conclusions by removing these cases from the unsuccessful group,

or re-defining them as successful attempts. In both cases we find our results remain the same

(Extended Data Fig. 7).
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For D3 we tried variants by expanding unsuccessful groups to all samples or restricting

successful groups to human-target samples only (Extended Data Fig. 8). Both variants yield similar

results. We also vary the threshold in our data, changing our definition of successful group as

organizations that killed at least 5, 10 and 100 people in a terrorist attack (Extended Data Fig. 8).

We find the patterns hold the same.

S7.2 Threshold for being inactive in the system

The definition of unsuccessful group depends on the threshold for inactive in the system. In main

text we set up the threshold as 5 years, i.e. if one does not appear in the system for the last 5 years,

we consider such cases as drop-out samples. To test the effect of this threshold, here we repeat our

main results for 3 years and 7 years (Extended Data Fig. 5), respectively. We find all our results

are robust as we tune this criterion.

S7.3 Effect of overall success rate

It is also important to keep in mind that the success rate may go up and down over time. Here

we control for the overall success rates across our three datasets and test its potential impact on

our results. More specifically, we renormalize our empirical data by weighing different samples

by success rate to ensure that each year has effectively the same success rate. For example, for

samples from the successful group ending in year y, we count the total number of successes and

failures in that year, defined as S(y) and F (y). We then calculate the weight of each sample as

w ≡ (F +S)/S, i.e., the inverse of the overall success rate. This is equivalent to resampling within
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all successful cases, with the sampling probability proportional to the inverse of the success rate.

To this end, the weighted sum of each year’s success should be S/w = (F + S), or proportional

to the total number of samples in the same year.

We then repeat all of our main measurements using the renormalized samples. As shown

in Extended Data Fig. 9, all of the main predictions made in our paper hold the same. This sug-

gests that even though intelligence agencies may improve their ongoing detection of terror attacks,

congress may decrease (or increase) its annual budget for science, and economic cycles may in-

crease or reduce the companies with successful exits, these changes are smooth in time, and do not

affect the conclusions drawn in the paper.

S7.4 Comparing first failures versus halfway/penultimate failures

Figure 3 showed performance divergence patterns in two groups using first and second failures.

Here we also compares the first failures versus halfway or penultimate failures, recovering the

same patterns (Extended Data Fig. 9).

S7.5 Other checks

For D1 we further confirmed that only focusing on failures before the first success yield similar

results. Indeed, as we plot Tn for samples with and without prior success, we find the dynamical

patterns remain the same. Lastly, we check the threshold of discussion score, considering original

percentile score higher than 55, rather than 50, as undiscussed. All these variants show results
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consistent with Fig. 3 (Extended Data Fig. 6).

For D3, 5.7% of the records contain vague numbers of killed people despite the evidence of

fatalities, which we discarded in our original analysis. We also consider these events as successful

attempts and repeated our results, finding the patterns remain the same (Extended Data Fig. 8).
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scaling, and the pace of life in cities. Proceedings of the national academy of sciences 104,

7301–7306 (2007).

50. Ritter, F. E. & Schooler, L. J. The learning curve. International encyclopedia of the social

and behavioral sciences 13, 8602–8605 (2001).

51. Stephan, P. E. How economics shapes science, vol. 1 (Harvard University Press Cambridge,

MA, 2012).

52. Paik, Y. Serial entrepreneurs and venture survival: Evidence from us venture-capital-financed

semiconductor firms. Strategic Entrepreneurship Journal 8, 254–268 (2014).

53. Walsh, G. S., Cunningham, J. A. et al. Business failure and entrepreneurship: emergence,

evolution and future research. Foundations and Trends R© in Entrepreneurship 12, 163–285

(2016).

54. McGrath, R. G. Falling forward: Real options reasoning and entrepreneurial failure.

Academy of Management review 24, 13–30 (1999).

55. Edmondson, A. C. Strategies for learning from failure. Harvard business review 89, 48–55

(2011).

84



56. Shepherd, D. A. Learning from business failure: Propositions of grief recovery for the self-

employed. Academy of management Review 28, 318–328 (2003).

57. Denrell, J. Vicarious learning, undersampling of failure, and the myths of management.

Organization Science 14, 227–243 (2003).

58. Kim, J.-Y. & Miner, A. S. Vicarious learning from the failures and near-failures of others:

Evidence from the us commercial banking industry. Academy of Management Journal 50,

687–714 (2007).

59. Edmondson, A. C. Learning from mistakes is easier said than done: Group and organizational

influences on the detection and correction of human error. The Journal of Applied Behavioral

Science 40, 66–90 (2004).

60. Madsen, P. M. These lives will not be lost in vain: Organizational learning from disaster in

us coal mining. Organization Science 20, 861–875 (2009).

61. Baum, J. A. & Dahlin, K. B. Aspiration performance and railroads’ patterns of learning from

train wrecks and crashes. Organization Science 18, 368–385 (2007).

62. Haunschild, P. R. & Sullivan, B. N. Learning from complexity: Effects of prior accidents

and incidents on airlines’ learning. Administrative science quarterly 47, 609–643 (2002).

63. Madsen, P. M. & Desai, V. Failing to learn? The effects of failure and success on orga-

nizational learning in the global orbital launch vehicle industry. Academy of Management

Journal 53, 451–476 (2010).

85



64. Sahal, D. A theory of progress functions. AIIE Transactions 11, 23–29 (1979).

65. Roberts, P. A theory of the learning process. Journal of the Operational Research Society

34, 71–79 (1983).

66. Kluger, A. N. & DeNisi, A. The effects of feedback interventions on performance: A histor-

ical review, a meta-analysis, and a preliminary feedback intervention theory. Psychological

bulletin 119, 254 (1996).

67. Asher, H. Cost-quantity relationships in the airframe industry. Ph.D. thesis, The Ohio State

University (1956).

68. Crossman, E. A theory of the acqusition of speed-skill. Ergonomics 2, 153–166 (1959).

69. Kauffman, S. & Levin, S. Towards a general theory of adaptive walks on rugged landscapes.

Journal of theoretical Biology 128, 11–45 (1987).

70. Levinthal, D. A. Adaptation on rugged landscapes. Management science 43, 934–950 (1997).

71. Denrell, J. & March, J. G. Adaptation as information restriction: The hot stove effect. Orga-

nization Science 12, 523–538 (2001).

72. Laird, J., Rosenbloom, P. & Newell, A. Universal subgoaling and chunking: The automatic

generation and learning of goal hierarchies, vol. 11 (Springer Science & Business Media,

2012).

86



73. Loreto, V., Servedio, V. D., Strogatz, S. H. & Tria, F. Dynamics on expanding spaces:

modeling the emergence of novelties. In Creativity and universality in language, 59–83

(Springer, 2016).

74. Heaps, H. S. Information retrieval, computational and theoretical aspects (Academic Press,

1978).

75. Simon, H. A. On a class of skew distribution functions. Biometrika 42, 425–440 (1955).

76. Tria, F., Loreto, V., Servedio, V. D. P. & Strogatz, S. H. The dynamics of correlated novelties.

Scientific reports 4, 5890 (2014).
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Category Reference Time Performance Power law Coexistence

Adaptation

Crossman68 3 7 7 7

Kauffman & Levin69 7 3 7 7

Denrell & March71 7 3 7 7

Search

Roberts65 7 3 3 7

Muth43 7 3 3 7

Mcnerney et al44 7 3 3 7

Individual learning
Newell et al41 3 7 3 7

Anderson42 3 7 3 7

Urn

Simon75 7 7 3 7

Tria et al76 3 7 3 3

Iacopini et al77 3 7 3 3

Other

Levy40 7 3 7 7

Shrager et al23 7 3 7 7

Sahal64 3 7 3 7

Johnson et al35 3 7 3 7

Clauset & Gleditsch34 3 7 3 7

Table S2: Literature review of relevant models. We test whether the models listed can

predict (1) Time: time reduction; (2) Performance: performance improvement (or reduc-

tion in any cost other than time); (3) Power law: analytical form of power law scaling;

(4) Coexistence: coexistence of two groups with different dynamics (success and unsuc-

cessful groups in this paper). We find that none of the existing models can predict all the

observations in our paper.
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Exponential Lognormal Power law Truncated power law

NIH grants 0.0 0.154 7.01× 10−4 2.33× 10−159

Startups 7.01× 10−5 0.723 2.48× 10−6 0.953

Terrorist attacks 0.0 0.822 0.566 0.221

Table S3: Comparing different functional forms of distributions with Weibull distributions.

All P -values terms denote the degree that Weibull distribution is compared over the other

in loglikelihood ratio tests (n = 20427, 667, 233). Among all alternatives, only lognormal

models show comparable fitting performance. Yet lognormal model uses two free pa-

rameters while the shape parameter of Weibull distribution is constrained by the scaling

identity (Eq. 4 in main text).
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NIH grants Startups Terrorist attacks

γ 0.361± 0.010 0.509± 0.036 0.640± 0.153

β 0.666± 0.017 0.566± 0.086 0.129± 0.033

P 0.176 0.421 0.141

Table S4: Parameter estimates (mean±s.e.m). γ corresponds to the temporal scaling expo-

nent uncovered in Eq. (2) in the main text (sample size is the same as in Fig. 3 d-f) and

β is the shape parameter of the Weibull distribution (s.e.m. estimated from bootstrapping

over 100 simulations), characterizing the length distribution of failure streaks. Two-sided

t-tests indicate that none of the three datasets can reject the validity of the scaling identity

β + γ = 1.
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